
PBS Works is a division of

PBS Professional® 12.1

PBS Professional

12.1 User’s Guide, updated 5/16/13.

Copyright © 2003-2013 Altair Engineering, Inc. All rights reserved.

PBS™, PBS Works™, PBS GridWorks®, PBS Professional®, PBS Analytics™, PBS Catalyst™,
e-Compute™, and e-Render™ are trademarks of Altair Engineering, Inc. and are protected under
U.S. and international laws and treaties. All other marks are the property of their respective own-
ers.

ALTAIR ENGINEERING INC. Proprietary and Confidential. Contains Trade Secret Information.
Not for use or disclosure outside ALTAIR and its licensed clients. Information contained herein
shall not be decompiled, disassembled, duplicated or disclosed in whole or in part for any pur-
pose. Usage of the software is only as explicitly permitted in the end user software license agree-
ment.

Copyright notice does not imply publication.

For documentation and the PBS Works forums, go to:
Web: www.pbsworks.com

For more information, contact Altair at:
Email: pbssales@altair.com

T

echnical Support

This document is proprietary information of

Altair Engineering, Inc.

Location

T

elephone e-mail

North

America +1 248 614 2425 pbssupport@altair.com

China +86 (0)21 6117 1666 es@altair.com.cn

France +33 (0)1 4133 0992 francesupport@altair.com

Germany +49 (0)7031 6208 22 hwsupport@altair.de

India +91 80 66 29 4500 pbs-support@india.altair.com

Italy +39 800 905595 support@altairengineering.it

Japan +81 3 5396 2881 pbs@altairjp.co.jp

Korea +82 31 728 8600 support@altair.co.kr

Scandinavia +46 (0)46 286 2050 support@altair.se

UK +44 (0)1926 468 600 pbssupport@uk.altair.com

Table of Contents

About PBS Documentation vii

1 New Features 1
1.1 New Features. 1
1.2 Deprecations . 4
1.3 Backward Compatibility . 5

2 Getting Started With PBS 7
2.1 Why Use PBS? . 7
2.2 PBS Tasks and Components . 7
2.3 Interfaces to PBS . 10
2.4 Setting Up Your Environment. 12

3 Submitting a PBS Job 21
3.1 Introduction to the PBS Job. 21
3.2 The PBS Job Script . 25
3.3 Submitting a PBS Job . 31
3.4 Job Submission Recommendations and Advice . 39
3.5 Job Submission Options . 39

4 Job Input and Output Files 49
4.1 Introduction to Job File I/O in PBS. 49
4.2 Input/Output File Staging . 49
4.3 Managing Output and Error Files . 61
PBS Professional 12.1 User’s Guide iii

T

able of Contents

5 Allocating Resources & Placing Jobs 69
5.1 What is a Vnode? . 69
5.2 PBS Resources . 70
5.3 Requesting Resources . 72
5.4 How Resources are Allocated to Jobs . 82
5.5 Limits on Resource Usage. 85
5.6 Viewing Resources . 88
5.7 Specifying Job Placement . 90
5.8 Backward Compatibility . 98

6 Multiprocessor Jobs 105
6.1 Submitting Multiprocessor Jobs . 105
6.2 Using MPI with PBS . 113
6.3 Using PVM with PBS . 151
6.4 Using OpenMP with PBS . 153
6.5 Hybrid MPI-OpenMP Jobs . 154

7 Controlling How Your Job Runs 157
7.1 Using Job Exit Status . 157
7.2 Using Job Dependencies . 158
7.3 Adjusting Job Running Time . 161
7.4 Using Checkpointing. 165
7.5 Holding and Releasing Jobs . 167
7.6 Allowing Your Job to be Re-run . 172
7.7 Making qsub Wait Until Job Ends . 173
7.8 Deferring Execution . 174
7.9 Setting Your Job’s Priority . 175
7.10 Running Your Job Interactively . 176

8 Reserving Resources Ahead of Time 183
8.1 Terminology . 183
8.2 Prerequisites for Reserving Resources . 184
8.3 Creating and Using Reservations . 184
8.4 Viewing the Status of a Reservation . 190
8.5 Using Your Reservation . 194
8.6 Reservation Caveats and Errors . 197
iv PBS Professional 12.1 User’s Guide

Table of Contents
9 Job Arrays 201
9.1 Advantages of Job Arrays . 201
9.2 Terminology . 201
9.3 Description of Job Arrays . 202
9.4 Submitting a Job Array . 206
9.5 Viewing Status of a Job Array . 213
9.6 Using PBS Commands with Job Arrays . 217
9.7 Job Array Caveats . 220

10 Working with PBS Jobs 223
10.1 Current vs. Historical Jobs . 223
10.2 Modifying Job Attributes . 225
10.3 Deleting Jobs . 228
10.4 Sending Messages to Jobs . 229
10.5 Sending Signals to Jobs. 230
10.6 Changing Order of Jobs. 231
10.7 Moving Jobs Between Queues . 233

11 Checking Job & System Status 235
11.1 Viewing Job Status . 235
11.2 Viewing Server Status . 250
11.3 Checking Queue Status . 252
11.4 Viewing Job & System Status with xpbs . 254
11.5 Selecting a List of Jobs . 254
11.6 Tracking Job Progress Using xpbs TrackJob Feature 257
11.7 Checking License Availability . 259

12 Submitting Cray Jobs 261
12.1 Introduction . 261
12.2 PBS Jobs on the Cray . 261
12.3 PBS Resources for the Cray . 262
12.4 Rules for Submitting Jobs on the Cray . 270
12.5 Techniques for Submitting Cray Jobs . 272
12.6 Viewing Cray Job Information . 278
12.7 Caveats and Advice . 282
12.8 Errors and Logging . 286
PBS Professional 12.1 User’s Guide v

Table of Contents
13 Using Provisioning 289
13.1 Definitions . 289
13.2 How Provisioning Works . 289
13.3 Requirements and Restrictions . 291
13.4 Using Provisioning . 293
13.5 Caveats and Errors. 294

14 HPC Basic Profile Jobs 297
14.1 Definitions . 297
14.2 How HPC Basic Profile Jobs Work . 298
14.3 Environmental Requirements for HPCBP. 298
14.4 Submitting HPC Basic Profile Jobs. 299
14.5 Managing HPCBP Jobs . 304
14.6 Errors, Logging and Troubleshooting . 305
14.7 Advice and Caveats . 311
14.8 See Also. 312

15 Special Circumstances and Tools 315
15.1 Support for Large Page Mode on AIX . 315
15.2 Using Comprehensive System Accounting. 316

16 Using the xpbs GUI 319
16.1 Using the xpbs command . 319
16.2 Using xpbs: Definitions of Terms . 320
16.3 Introducing the xpbs Main Display . 321
16.4 Setting xpbs Preferences . 328
16.5 Relationship Between PBS and xpbs . 329
16.6 How to Submit a Job Using xpbs . 330
16.7 Exiting xpbs. 333
16.8 The xpbs Configuration File . 334
16.9 xpbs Preferences . 334

Appendix B: License Agreement 339

Index 349
vi PBS Professional 12.1 User’s Guide

About PBS Documentation
Where to Keep the Documentation

To make cross-references work, put all of the PBS guides in the same directory.

What is PBS Professional?

PBS is a workload management system that provides a unified batch queuing and job man-
agement interface to a set of computing resources.

The PBS Professional Documentation

The documentation for PBS Professional includes the following:

PBS Professional Administrator’s Guide:

Provides the PBS administrator with the information required to configure and manage
PBS Professional (PBS).

PBS Professional Quick Start Guide:

Provides a quick overview of PBS Professional installation and license file generation.

PBS Professional Installation & Upgrade Guide:

Contains information on installing and upgrading PBS Professional.

PBS Professional User’s Guide:

Covers user commands and how to submit, monitor, track, delete, and manipulate jobs.

PBS Professional Programmer’s Guide:

Discusses the PBS application programming interface (API).
PBS Professional 12.1 User’s Guide vii

PBS Professional Reference Guide:

Contains PBS reference material.

PBS Manual Pages:

Describe PBS commands, resources, attributes, APIs

Ordering Software and Publications

To order additional copies of this manual and other PBS publications, or to purchase addi-
tional software licenses, contact your Altair sales representative. Contact information is
included on the copyright page of this book.

Document Conventions

PBS documentation uses the following typographic conventions:

abbreviation

The shortest acceptable abbreviation of a command or subcommand is underlined.

command

Commands such as qmgr and scp

input

Command-line instructions

manpage(x)

File and path names. Manual page references include the section number in parentheses
appended to the manual page name.

formats

Formats

Attributes

Attributes, parameters, objects, variable names, resources, types

Values

Keywords, instances, states, values, labels

Definitions

Terms being defined
viii PBS Professional 12.1 User’s Guide

Output

Output or example code

File contents
PBS Professional 12.1 User’s Guide ix

x PBS Professional 12.1 User’s Guide

Chapter 1
New Features

1.1 New Features

1.1.1 New Features in PBS Professional 12.0

1.1.1.1 Shrink-to-fit Jobs

PBS allows you to specify a variable running time for jobs. You can specify a walltime range
for jobs where attempting to run the job in a tight time slot can be useful. Administrators can
convert non-shrink-to-fit jobs into shrink-to-fit jobs in order to maximize machine use. See
section 7.3, “Adjusting Job Running Time”, on page 161.

1.1.2 New Features in PBS Professional 11.3

1.1.2.1 Deleting Moved and Finished Jobs

You can delete a moved or finished job. See section 10.3.2, “Deleting Finished Jobs”, on
page 228 and section 10.3.3, “Deleting Moved Jobs”, on page 229.

1.1.3 New Features in PBS Professional 11.2

1.1.3.1 Grouping Jobs by Project

You can group your jobs by project, by assigning project names. See section 3.5.3, “Specify-
ing a Job’s Project”, on page 44.
PBS Professional 12.1 User’s Guide 1

Chapter 1 New Features
1.1.3.2 Support for Accelerators on Cray

You can request accelerators for Cray jobs. See section 12.5.11, “Requesting Accelerators”,
on page 277.

1.1.3.3 Support for X Forwarding for Interactive Jobs

You can receive X output from interactive jobs. See section 7.10.6, “Receiving X Output
from Interactive Jobs”, on page 177.

1.1.4 New Features in PBS Professional 11.1

1.1.4.1 Support for Interlagos Hardware

You can request Interlagos hardware for your jobs. See section 12.5.10, “Requesting Interla-
gos Hardware”, on page 277.

1.1.5 New Features in PBS Professional 11.0

1.1.5.1 Improved Cray Integration

PBS is more tightly integrated with Cray systems. You can use the PBS select and place lan-
guage when submitting Cray jobs. See section , “Submitting Cray Jobs”, on page 261.

1.1.5.2 Enhanced Job Placement

PBS allows job submitters to scatter chunks by vnode in addition to scattering by host. PBS
also allows job submitters to reserve entire hosts via a job’s placement request. See section
5.7, “Specifying Job Placement”, on page 90.

1.1.6 New Features in PBS Professional 10.4

1.1.6.1 Estimated Job Start Times

PBS can estimate the start time and vnodes for jobs. See section 11.1.13, “Viewing Estimated
Start Times For Jobs”, on page 246.
2 PBS Professional 12.1 User’s Guide

New Features Chapter 1
1.1.6.2 Unified Job Submission

PBS allows you to submit jobs using the same scripts, whether the job is submitted on a Win-
dows or UNIX/Linux system. See section 3.2.2.2, “Python Job Scripts”, on page 25.

1.1.7 New Features in PBS Professional 10.2

1.1.7.1 Provisioning

PBS provides automatic provisioning of an OS or application on vnodes that are configured to
be provisioned. When a job requires an OS that is available but not running, or an application
that is not installed, PBS provisions the vnode with that OS or application. See Chapter 13,
"Using Provisioning", on page 289.

1.1.7.2 Walltime as Checkpoint Interval Measure

PBS allows a job to be checkpointed according to its walltime usage. See “Job Attributes” on
page 374 of the PBS Professional Reference Guide.

1.1.7.3 Employing User Space Mode on IBM InfiniBand
Switches

PBS allows users submitting POE jobs to use InfiniBand switches in User Space mode. See
section 6.2.5, “IBM POE with PBS”, on page 118.

1.1.8 New Features in Version 10.1

1.1.8.1 Submitting HPCBP Jobs

Support for HPCBP jobs is deprecated. PBS Professional can schedule and manage jobs on
one or more HPC Basic Profile compliant servers using the Grid Forum OGSA HPC Basic
Profile web services standard. You can submit a generic job to PBS, so that PBS can run it on
an HPC Basic Profile Server. This chapter describes how to use PBS for HPC Basic Profile
jobs. See Chapter 14, "HPC Basic Profile Jobs", on page 297.

1.1.8.2 Using Job History Information

PBS Professional can provide job history information, including what the submission parame-
ters were, whether the job started execution, whether execution succeeded, whether staging
out of results succeeded, and which resources were used. PBS can keep job history for jobs
PBS Professional 12.1 User’s Guide 3

Chapter 1 New Features
which have finished execution, were deleted, or were moved to another server. See section
10.1, “Current vs. Historical Jobs”, on page 223 and section 11.1.15, “Viewing Information
for Finished and Moved Jobs”, on page 247.

1.1.8.3 Reservation Fault Tolerance

PBS attempts to reconfirm reservations for which associated vnodes have become unavail-
able. See section 8.6.6, “Reservation Fault Tolerance”, on page 199.

1.1.9 New Features in Recent Releases

1.1.9.1 Path to Binaries (10.0)

The path to the PBS binaries may have changed for your system. If the old path was not one
of /opt/pbs, /usr/pbs, or /usr/local/pbs, you may need to add /opt/pbs/
default/bin to your PATH environment variable.

1.1.9.2 Job-Specific Staging and Execution Directories (9.2)

PBS can now provide a staging and execution directory for each job. Jobs have new attributes
sandbox and jobdir, the MoM has a new parameter $jobdir_root, and there is a new environ-
ment variable called PBS_JOBDIR. If the job’s sandbox attribute is set to PRIVATE, PBS
creates a job-specific staging and execution directory. If the job’s sandbox attribute is unset
or is set to HOME, PBS uses the job submitter’s home directory for staging and execution,
which is how previous versions of PBS behaved. See section 4.2, “Input/Output File Stag-
ing”, on page 49.

1.1.9.3 Standing Reservations (9.2)

PBS now provides a facility for making standing reservations. A standing reservation is a
series of advance reservations. The pbs_rsub command is used to create both advance and
standing reservations. See Chapter 8, "Reserving Resources Ahead of Time", on page 183.

1.2 Deprecations

For a list of deprecations, see section 1.3, "Deprecations and Removals" on page 8 in the PBS
Professional Administrator’s Guide.
4 PBS Professional 12.1 User’s Guide

New Features Chapter 1
1.3 Backward Compatibility

1.3.1 Job Dependencies Affected By Job History

Enabling job history changes the behavior of dependent jobs. If a job j1 depends on a finished
job j2 for which PBS is maintaining history than j1 will go into the held state. If job j1
depends on a finished job j3 that has been purged from the historical records than j1 will be
rejected just as in previous versions of PBS where the job was no longer in the system.

1.3.2 PBS path information no longer saved in
AUTOEXEC.BAT

Any value for PATH saved in AUTOEXEC.BAT may be lost after installation of PBS. If
there is any path information that needs to be saved, AUTOEXEC.BAT must be edited by
hand after the installation of PBS. PBS path information is no longer saved in
AUTOEXEC.BAT.

1.3.3 Submitting Jobs with Old Syntax

For instructions on submitting jobs using old syntax, see section 5.8, “Backward Compatibil-
ity”, on page 98.
PBS Professional 12.1 User’s Guide 5

Chapter 1 New Features
6 PBS Professional 12.1 User’s Guide

Chapter 2
Getting Started With PBS

2.1 Why Use PBS?

PBS frees you from the mechanics of getting your work done; you don’t need to shepherd
each job to the right machine, get input and output copied back and forth, or wait until a par-
ticular machine is available. You need only specify requirements for the tasks you want exe-
cuted, and hand the tasks off to PBS. PBS holds each task until a slot opens up, then takes
care of copying input files to the execution directory, executing the task, and returning the
output to you.

PBS keeps track of which hardware and licenses are available, and all waiting and running
tasks. PBS matches the requirements of each of your tasks to the right hardware, licenses, and
time slot, and makes sure that tasks are run according to the site’s policy. PBS also maximizes
usage and throughput.

2.2 PBS Tasks and Components

2.2.1 PBS Tasks

PBS is a distributed workload management system. PBS manages and monitors the computa-
tional workload for one or more computers. PBS does the following:

Queuing jobs
PBS collects jobs (work or tasks) to be run on one or more computers.
Users submit jobs to PBS, where they are queued up until PBS is ready to
run them.
PBS Professional 12.1 User’s Guide 7

Chapter 2 Getting Started With PBS
Scheduling jobs
PBS selects which jobs to run, and when and where to run them, according
to the policy specified by the site administrator. PBS allows the administra-
tor to prioritize jobs and allocate resources in a wide variety of ways, to
maximize efficiency and/or throughput.

Monitoring jobs
PBS tracks system resources, enforces usage policy, and reports usage.
PBS tracks job completion, ensuring that jobs run despite system outages.

2.2.2 PBS Components

PBS consists of a set of commands and system daemons/services, shown in Figure 2-1:

The server and scheduler daemons run on the server host. A machine that executes jobs is
called an execution host. Each execution host runs a MoM daemon. The server host can run
a MoM daemon. One server manages any number of MoM daemons. Commands can be run
from the server host, execution hosts, and command-only client hosts. The server/scheduler
host, the execution hosts, and the client hosts are called a PBS complex.

Figure 2-1: Jobs are submitted to the PBS server. The scheduler chooses where and when
to run the jobs, and the server sends the jobs to MoM. PBS commands communicate
with the server.

Batch
 JobsJobs

Kernel

PBS
Commands

Server

Scheduler

MoM
8 PBS Professional 12.1 User’s Guide

Getting Started With PBS Chapter 2
Commands
PBS provides a set of commands that you can use to submit, monitor, alter,
and delete jobs. The PBS commands can be installed on any supported
platform, with or without the other PBS components.

Some PBS commands can be run by any PBS user, while some require
administrator or operator privilege. Some commands provide extended fea-
tures for administrators and operators.

Job
A PBS job is a task, in the form of a shell script, cmd batch file, Python
script, etc. describing the commands and/or applications you want to run.
You hand your task off to PBS, where it becomes a PBS job.

Server
The PBS server manages jobs for the PBS complex. PBS commands talk to
the PBS server, jobs are submitted to the server, and the server queues the
jobs and sends them to execution hosts.

Scheduler
The scheduler runs jobs according to the policy specified by the site admin-
istrator. The scheduler matches each job’s requirements with available
resources, and prioritizes jobs and allocates resources according to policy.

MoM
MoM manages jobs once they are sent to the execution host. One MoM
manages the jobs on each execution host. MoM stages files in, runs any
prologue, starts each job, monitors the job, stages files out and returns out-
put to the job submitter, runs any epilogue, and cleans up after the job.
MoM can also run any execution host hooks.

MoM creates a new session that is as identical to your login session as is
possible. For example, under UNIX, if the job submitter’s login shell is
csh, then MoM creates a session in which .login is run as well as
.cshrc.

MoM is a reverse-engineered acronym that stands for Machine-oriented
Mini-server.
PBS Professional 12.1 User’s Guide 9

Chapter 2 Getting Started With PBS
2.3 Interfaces to PBS

PBS provides a command-line interface and its own GUI (Graphical User Interface). Altair
also offers a web-based front end to PBS called Compute Manager, which is a separate prod-
uct. This document describes the PBS command-line interface and the PBS GUI. For infor-
mation on Compute Manager, see www.pbsworks.com.

2.3.1 PBS Commands

PBS provides a set of commands that allow to submit, monitor, and manage your jobs. Some
PBS commands can be used by any PBS user; some can be used only by administrators, and
some have different behavior depending on the role of the person invoking them. In this doc-
ument, we describe the commands that can be used by any PBS user. For a complete descrip-
tion of all commands and their requirements, see “Requirements for Commands” on page 25
of the PBS Professional Reference Guide.

Table 2-1: PBS Professional User Commands

PBS User Commands

Command Purpose

nqs2pbs Convert from NQS to PBS

pbs_rdel Delete a reservation

pbs_rstat Status a reservation

pbs_password Update per-user / per-server password

pbs_python Python interpreter

pbs_rsub Submit a reservation

pbsdsh PBS distributed shell

qalter Alter job

qdel Delete job

qhold Hold a job

qmove Move job
10 PBS Professional 12.1 User’s Guide

Getting Started With PBS Chapter 2
We also list the PBS administrator commands here:

qmsg Send message to job

qorder Reorder jobs

qrls Release hold on job

qselect Select jobs by criteria

qsig Send signal to job

qstat Status job, queue, Server

qsub Submit a job

tracejob Report job history

xpbs Graphical user interface

Table 3: PBS Administrator Commands

 PBS Administrator Commands

Command Purpose

pbs-report Report job statistics

pbs_hostn Report host name(s)

pbs_migrate_users Migrate per-user / per-server passwords

pbs_probe PBS diagnostic tool

pbs_tclsh TCL with PBS API

pbsfs Show fairshare usage

pbsnodes Manage vnodes

printjob Report job details

Table 2-1: PBS Professional User Commands

PBS User Commands
PBS Professional 12.1 User’s Guide 11

Chapter 2 Getting Started With PBS
2.4 Setting Up Your Environment

2.4.1 Prerequisites for Account

Your account must have the following characteristics for PBS to work correctly:

• Account must have access to all PBS hosts

• Account must have valid username and group on all execution hosts and on the server

• Account must be able to transfer files between hosts using the file transfer mechanism
chosen by the administrator. This is described in section 13.9, "Setting File Transfer
Mechanism", on page 897 of the PBS Professional Administrator’s Guide.

• The time zone environment variable must be set correctly in order to use advance and
standing reservations. See section 2.4.5, “Setting the Submission Host’s Time Zone”, on
page 18.

• Username must be 256 characters or less in length.

• Your environment must be correctly configured:

 - For UNIX/Linux, see section 2.4.2, “Setting Up Your UNIX/Linux Environment”, on
page 13.

 - For Windows, see section 2.4.3, “Setting Up Your Windows Environment”, on page

qdisable Disable a queue

qenable Enable a queue

qmgr Manager interface

qrerun Requeue running job

qrun Manually start a job

qstart Start a queue

qstop Stop a queue

qterm Shutdown PBS

xpbsmon GUI monitoring tool

Table 3: PBS Administrator Commands

 PBS Administrator Commands
12 PBS Professional 12.1 User’s Guide

Getting Started With PBS Chapter 2
15.

• Account must have correct user authorization to run jobs. See section 2.4.4, “Setting Up
Your User Authorization”, on page 17.

2.4.2 Setting Up Your UNIX/Linux Environment

2.4.2.1 Set Paths to PBS Commands

PBS commands reside in a directory pointed to by $PBS_EXEC/bin. This path may change
from one installation of PBS to the next, so use the variable instead of the absolute path. The
location of $PBS_EXEC is given in /etc/pbs.conf. Make it easy to use PBS commands by
doing the following:

1. In your .login file, source /etc/pbs.conf:

If you are using bash or sh, do the following:

% . /etc/pbs.conf

If you are using csh, do the following:

%source /etc/pbs.conf

2. Add the path to PBS commands to your PATH environment variable. Use
$PBS_EXEC, not the absolute path. For example, where MY_PATH is your existing
set of paths:

setenv PATH ${MY_PATH}:$PBS_EXEC/bin/

2.4.2.2 Set Paths to PBS Man Pages

Add the path to the PBS man pages to your MANPATH environment variable:

setenv MANPATH /usr/man:/usr/local/man:$PBS_EXEC/man/

2.4.2.3 Make Login and Logout Files Behave Properly for Jobs

By default, PBS runs your jobs under your login, meaning that your login and logout files are
sourced for each job. If your .cshrc, .login, .profile, or .logout contains com-
mands that attempt to set terminal characteristics or produce output, such as by writing to
stdout, jobs may not run. Make sure that any such command in these files is skipped when
PBS Professional 12.1 User’s Guide 13

Chapter 2 Getting Started With PBS
the file is run inside a PBS job. PBS sets the PBS_ENVIRONMENT environment variable
inside jobs. Test for the PBS_ENVIRONMENT environment variable and run commands
only when it is not set. For example, in a .login file:

if (! $?PBS_ENVIRONMENT) then

do terminal settings here

run command with output here

endif

2.4.2.4 Capture Correct Job Exit Status

When a PBS job runs, the exit status of the last command executed in the job is reported by
the job’s shell to PBS as the exit status of the job. The exit status of the job is important for job
dependencies and job chaining. Under UNIX/Linux, the last command executed might not be
the last command in your job, if you have a .logout on the execution host. In that case, the
last command executed is from the .logout and not from your job. To prevent this, preserve
the job’s exit status in your .logout file by saving it at the top, then doing an explicit exit
at the end, as shown below:

set EXITVAL = $status

previous contents of .logout here

exit $EXITVAL

Under Windows, you do not need to take special steps to preserve the job’s exit status.

2.4.2.5 Avoid Background Processes Inside Jobs

Make sure that your login file doesn’t run processes in the background when invoked inside a
PBS job. If your login file contains a command that runs in the background inside a PBS job,
persistent processes can cause trouble for some MoMs. For example, applications like ssh-
agent background themselves into a new session and would prevent a cpuset-enabled MoM
from deleting the CPU set for the job, thereby preventing subsequent jobs from running.

2.4.2.6 Provide bash Functions to Jobs

If your jobs need to have exported bash functions available to them, you can put these func-
tions in your .profile or .login on the execution host(s). You can also use qsub -V or
qsub -v <function name> to forward the function at job submission. Just make sure
that you don’t have a function with the same name as an environment variable if you use -v or
-V. See section 7.10.8, “Forwarding Exported Shell Functions”, on page 180.
14 PBS Professional 12.1 User’s Guide

Getting Started With PBS Chapter 2
2.4.3 Setting Up Your Windows Environment

2.4.3.1 HOMEDIR for Windows Users

PBS starts jobs in the job owner’s home directory, which is pointed to by HOMEDIR.

If you have not been explicitly assigned a home directory, PBS uses a Windows-assigned
default as the base location for your default home directory, and starts jobs there. Windows
assigns the following default home path:

[PROFILE_PATH]\My Documents\PBS Pro

For example, if userA has not been assigned a home directory, the default home directory is
the following:

\Documents and Settings\userA\My Documents\PBS Pro

Windows can return one PROFILE_PATH in one of the following forms:

\Documents and Settings\username

\Documents and Settings\username.local-hostname

\Documents and Settings\username.local-hostname.00N

where N is a number

\Documents and Settings\username.domain-name

2.4.3.2 Requirements for Windows Username

• The username must contain only alphanumeric characters, dot (.), underscore (_), and/or
hyphen “-”.

• The hyphen must not be the first letter of the username.

• If “@” appears in the username, then it is assumed to be in the context of a Windows
domain account: username@domainname.

• The space character is allowed. If a space character appears in a username string, then the
string is displayed in quotes, and must be specified in quotes.

2.4.3.3 Requirements for Windows User Account

Your Windows user account must be a normal user account. You cannot submit jobs from a
SYSTEM account.
PBS Professional 12.1 User’s Guide 15

Chapter 2 Getting Started With PBS
2.4.3.4 Allow Job Submission and Return of Output

PBS runs your jobs under your account. When your job runs on a remote execution host, it
needs to be able to log in and transfer files using your account. If your system administrator
has not set up access using hosts.equiv, you can set up access using .rhosts files. A
.rhosts file on the server allows you to submit jobs from a remote machine to the server.

Set up the .rhosts file in your PROFILE_PATH, in your home directory, on the PBS
server host and on each execution host. For example:

\Documents and Settings\username\.rhosts

Format of .rhosts file:

hostname username

Be sure the .rhosts file is owned by you or an administrator-type group, and has write
access granted only to you or an administrator or group.

Add all PBS hosts to your .rhosts file:

Host1 user1

Host2 user1

Host3 user1

Make sure that you list all the names by which a host may be known. For instance, if Host4 is
known as "Host4", "Host4.<subdomain>", or "Host4.<subdomain>.<domain>" you should
list all three in the .rhosts file:

Host4 user1

Host4.subdomain user1

Host4.subdomain.domain user1

If your username contains white space, quote it in the .rhosts file:

Host4.subdomain.domain “Bob Jones”

Example 2-1: The following entry in user user1’s .rhosts file on the server permits user
user1 to run jobs submitted from the workstation wks031:

wks031 user1

To allow user1’s output files from a job that runs on execution host Host1 to be returned
to user1 automatically by PBS, user1 adds an entry to the .rhosts file on the worksta-
tion naming the execution host Host1:

Host1 user1
16 PBS Professional 12.1 User’s Guide

Getting Started With PBS Chapter 2
2.4.4 Setting Up Your User Authorization

PBS requires that your username be consistent across a server and its execution hosts, but not
across a submission host and a server. You may have access to more than one server, and may
have a different username on each server. You can change the user ID for a job; see section
3.5.4, “Specifying Job Username”, on page 44.

2.4.4.1 User Authorization Under UNIX/Linux

The server’s flatuid attribute determines whether it assumes that identical user names mean
identical users. If True, it assumes that if UserS exists on both the submission host and the
server host, then UserS can run jobs on that server. If not True, the server calls ruserok()
which uses /etc/hosts.equiv or .rhosts to authorize UserS to run as UserS. In this
case, the username you specify with the -u option must have a .rhosts file on the server’s
host listing the job owner, meaning that UserS at the server must have a .rhosts file listing
UserS.

Example 2-2: Our user is UserA on the submission host, but is userB at the server. In order to
submit jobs as UserA and run jobs as UserB, UserB must have a .rhosts file on the
server’s host that lists UserA.

Note that if different names are listed via the -u option, then they are checked regardless of
the value of flatuid.

Using hosts.equiv is not recommended.

Table 2-1: UNIX User ID and flatuid

Value of
flatuid

Submission Host Username vs. Server Host Username

UserS Same as UserS UserS Different from UserA

True Server assumes user has permis-
sion to run job

Server checks whether UserS can run
job as UserA

False/

unset

Server checks whether UserS can
run job as UserS

Server checks whether UserS can run
job as UserA
PBS Professional 12.1 User’s Guide 17

Chapter 2 Getting Started With PBS
2.4.4.2 User Authorization Under Windows

Under Windows, if a user has a non-admin account, the server’s hosts.equiv file is used
to determine whether that user can run a job on a given server. For an admin account,
[PROFILE_PATH].\rhosts is used, and the server’s acl_roots attribute must be set to
allow job submissions. User names containing spaces are allowed as long as the username
length is no more than 256 characters, and the user names are quoted when used in the com-
mand line.

2.4.5 Setting the Submission Host’s Time Zone

Make sure that the environment variable PBS_TZID is set correctly at your submission host.
Set this environment variable to a timezone location known to PBS Professional. You can get
the appropriate zone location from the PBS server host.

Table 2-2: Requirements for Admin User to Submit Job

Location/Action
Submission Host Username vs. Server Host

Username

UserS Same as UserS
UserS Different from

UserA

[PROFILE_PATH]\

.rhosts contains

For UserS on ServerA,

add <HostS> UserS

For UserA on ServerA,

add <HostS> UserS

set ServerA’s

acl_roots attribute

qmgr> set server
acl_roots=UserS

qmgr> set server
acl_roots=UserA

Table 2-3: Requirements for Non-admin User to Submit Job

File
Submission Host Username vs. Server Host

Username

UserS Same as
UserS

UserS Different from
UserA

hosts.equiv on ServerA <HostS> <HostS> UserS
18 PBS Professional 12.1 User’s Guide

Getting Started With PBS Chapter 2
On Linux, use the tzselect command if it is available, or get the zone location from /
usr/share/zoneinfo/zone.tab.

On all other platforms, use the list of libical supported zoneinfo locations available under
$PBS_EXEC/lib/ical/zoneinfo/zones.tab.

The format for PBS_TZID is a timezone location, rather than a timezone POSIX abbrevia-
tion. Examples of values for PBS_TZID are:

America/Los_Angeles

America/Detroit

Europe/Berlin

Asia/Calcutta
PBS Professional 12.1 User’s Guide 19

Chapter 2 Getting Started With PBS
20 PBS Professional 12.1 User’s Guide

Chapter 3
Submitting a PBS Job

3.1 Introduction to the PBS Job

To use PBS, you create a batch job, usually just called a job, which you then hand off, or sub-
mit, to PBS. A batch job is a set of commands and/or applications you want to run on one or
more execution machines, contained in a file or typed at the command line. You can include
instructions which specify the characteristics such as job name, and resource requirements
such as memory, CPU time, etc., that your job needs. The job file can be a shell script under
UNIX, a cmd batch file under Windows, a Python script, a Perl script, etc.

For example, here is a simple PBS batch job file which requests one hour of time, 400MB of
memory, 4 CPUs, and runs my_application:

#!/bin/sh

#PBS -l walltime=1:00:00

#PBS -l mem=400mb,ncpus=4

./my_application

To submit the job to PBS, you use the qsub command, and give the job script as an argument
to qsub. For example, to submit the script named “my_script”:

qsub my_script

We will go into the details of job script creation in section 3.2, “The PBS Job Script”, on page
25, and job submission in section 3.3, “Submitting a PBS Job”, on page 31.
PBS Professional 12.1 User’s Guide 21

Chapter 3 Submitting a PBS Job
3.1.1 Lifecycle of a PBS Job, Briefly

Your PBS job has the following lifecycle:

1. You write a job script

2. You submit the job to PBS

3. PBS accepts the job and returns a job ID to you

4. The PBS scheduler finds the right place and time to run your job, and sends your job
to the selected execution host(s)

5. Licenses are obtained

6. On each execution host, PBS creates a job-specific staging and execution directory

7. PBS sets PBS_JOBDIR and the job’s jobdir attribute to the path of the job’s staging
and execution directory.

8. On each execution host allocated to the job, PBS creates a job-specific temporary
directory.

9. PBS sets the TMPDIR environment variable to the pathname of the temporary direc-
tory.

10. If any errors occur during directory creation or the setting of variables, the job is
requeued.

11. Input files or directories are copied to the primary execution host

12. If needed, cpusets are created

• If it exists, the prologue runs on the primary execution host, with its current working
directory set to PBS_HOME/mom_priv, and with PBS_JOBDIR and TMPDIR set in
its environment.

13. The job runs under your login

14. If it exists, the epilogue runs on the primary execution host, with its current working
directory set to the path of the job’s staging and execution directory, and with
PBS_JOBDIR and TMPDIR set in its environment.

15. Output files or directories are copied to specified locations

16. Temporary files and directories are cleaned up

17. Licenses are returned to pool

18. Any cpusets are deleted
22 PBS Professional 12.1 User’s Guide

Submitting a PBS Job Chapter 3
For more detail about the lifecycle of a job, see section 4.2.7, “Summary of the Job’s Lifecy-
cle”, on page 57 and section 4.2.8, “Detailed Description of Job’s Lifecycle”, on page 58.

3.1.2 Where and How Your PBS Job Runs

Your PBS jobs run on hosts that the administrator has designated to PBS as execution hosts.
The PBS scheduler chooses one or more execution hosts that have the resources that your job
requires.

PBS runs your jobs under your user account. This means that your login and logout files are
executed for each job, and some of your environment goes with the job. It’s important to
make sure that your login and logout files don’t interfere with your jobs; see section 2.4.2,
“Setting Up Your UNIX/Linux Environment”, on page 13.

3.1.3 The Job Identifier

After you submit a job, PBS returns a job identifier. Format for a job:

sequence_number.servername

Format for a job array:

sequence_number[].servername.domain

You’ll need the job identifier for any actions involving the job, such as checking job status,
modifying the job, tracking the job, or deleting the job.

The largest possible job ID is the 7-digit number 9,999,999. After this has been reached, job
IDs start again at zero.

3.1.4 Your Job’s Shell Script(s)

When PBS runs your job, PBS starts the top shell that you specify for the job. The top shell
defaults to your login shell on the execution host, but you can set another using the job’s
Shell_Path_List attribute. See section 3.3.3.1, “Specifying the Job’s Top Shell”, on page 32.

Under UNIX/Linux, if you do not specify a shell inside the job script, PBS defaults to using /
bin/sh. If you specify a different shell inside the job script, the top shell spawns that shell
to run the script; see section 3.3.3.2, “Specifying Job Script Shell or Interpreter”, on page 33.

Under Windows, the job shell is the same as the top shell.
PBS Professional 12.1 User’s Guide 23

Chapter 3 Submitting a PBS Job
3.1.5 Scratch Space for Jobs

When PBS runs your job, it creates a temporary scratch directory for the job on each execu-
tion host. If your administrator has not specified a temporary directory, the root of the tempo-
rary directory is /tmp. Your administrator can specify a root for the temporary directory on
each execution host using the $tmpdir MoM parameter. PBS creates the TMPDIR environ-
ment variable, and sets it to the full path to the temporary scratch directory.

Under Windows, PBS creates the temporary directory and sets TMP to the value of the Win-
dows %TMPDIR% environment variable. If your administrator has not specified a tempo-
rary directory, PBS creates the temporary directory under either \winnt\temp or
\windows\temp.

PBS removes the directory when the job is finished. The location of the temporary directory
is set by PBS; you should not set TMPDIR.

Your job script can access the scratch space. For example:

UNIX:

cd $TMPDIR

Windows:

cd %TMPDIR%

For scratch space for MPI jobs, see section 6.2.3, “Caveats for Using MPIs”, on page 117.

3.1.6 Types of Jobs

PBS allows you to submit standard batch jobs or interactive jobs. The difference is that while
the interactive job runs, you have an interactive session running, giving you interactive access
to job processes. There is no interactive access to a standard batch job. We cover interactive
jobs in section 7.10, “Running Your Job Interactively”, on page 176.

3.1.7 Job Input and Output Files

You can tell PBS to copy files or directories from any accessible location to the execution
host, and to copy output files and directories from the execution host wherever you want. We
describe how to do this in Chapter 4, "Job Input and Output Files", on page 49.
24 PBS Professional 12.1 User’s Guide

Submitting a PBS Job Chapter 3
3.2 The PBS Job Script

3.2.1 Overview of a Job Script

A PBS job script consists of:

• An optional shell specification

• PBS directives

• Job tasks (programs or commands)

3.2.2 Types of Job Scripts

PBS allows you to use any of the following for job scripts:

• A Python, Perl, or other script that can run under Windows or UNIX/Linux

• A UNIX shell script that runs under UNIX/Linux

• Windows command or PowerShell batch script under Windows

3.2.2.1 UNIX Shell Scripts

Since the job file can be a shell script, the first line of a shell script job file specifies which
shell to use to execute the script. Your login shell is the default, but you can change this. This
first line can be omitted if it is acceptable for the job file to be interpreted using the login
shell. We recommend that you always specify the shell.

3.2.2.2 Python Job Scripts

PBS allows you to submit jobs using Python scripts under Windows or UNIX/Linux. PBS
includes a Python package, allowing Python job scripts to run; you do not need to install
Python. To run a Python job script:

UNIX/Linux:

qsub <script name>

Windows:

qsub -S %PBS_EXEC%\bin\pbs_python.exe <script name>

If the path contains any spaces, it must be quoted, for example:

qsub -S “%PBS_EXEC%\bin\pbs_python.exe” <python job script>
PBS Professional 12.1 User’s Guide 25

Chapter 3 Submitting a PBS Job
You can include PBS directives in a Python job script as you would in a UNIX shell script.
For example:

% cat myjob.py

#!/usr/bin/python

#PBS -l select=1:ncpus=3:mem=1gb

#PBS -N HelloJob

print “Hello”

Python job scripts can access Win32 APIs, including the following modules:

• Win32api

• Win32con

• Pywintypes

3.2.2.2.i Debugging Python Job Scripts

You can run Python interactively, outside of PBS, to debug a Python job script. You use the
Python interpreter to test parts of your script.

Under UNIX/Linux, use the -i option to the pbs_python command, for example:

/opt/pbs/default/bin/pbs_python -i <return>

Under Windows, the -i option is not necessary, but can be used. For example, either of the
following will work:

C:\Program Files\PBS Pro\exec\bin\pbs_python.exe <return>

C:\Program Files\PBS Pro\exec\bin\pbs_python.exe -i <return>

When the Python interpreter runs, it presents you with its own prompt. For example:

% /opt/pbs/default/bin/pbs_python -i <return>

>> print “hello”

hello

3.2.2.2.ii Python Windows Caveat

If you have Python natively installed, and you need to use the win32api, make sure that you
import pywintypes before win32api, otherwise you will get an error. Do the following:

cmd> pbs_python

>> import pywintypes

>> import win32api
26 PBS Professional 12.1 User’s Guide

Submitting a PBS Job Chapter 3
3.2.2.3 Windows Job Scripts

The Windows script can be a .exe or .bat file, or a Python or Perl script.

3.2.2.3.i Requirements for Windows Command Scripts

• Under Windows, comments in the job script must be in ASCII characters.

• Any .bat files that are to be executed within a PBS job script have to be prefixed with
"call" as in:
@echo off

call E:\step1.bat

call E:\step2.bat

Without the "call", only the first .bat file gets executed and it doesn't return control to
the calling interpreter.

For example, an old job script that contains:

@echo off

E:\step1.bat

E:\step2.bat

should now be:

@echo off

call E:\step1.bat

call E:\step2.bat

3.2.2.3.ii Windows Advice and Caveats

• In Windows, if you use notepad to create a job script, the last line is not automatically
newline-terminated. Be sure to add one explicitly, otherwise, PBS job will get the follow-
ing error message:
More?

when the Windows command interpreter tries to execute that last line.

• Drive mapping commands are typically put in the job script.

• Do not use xcopy inside a job script. Use copy, robocopy, or pbs_rcp instead.
The xcopy command sometimes expects input from the user. Because of this, it must be
assigned an input handle. Since PBS does not create the job process with an input handle
assigned, xcopy can fail or behave abnormally if used inside a PBS job script.

• PBS jobs submitted from cygwin execute under the native cmd environment, and not
under cygwin.
PBS Professional 12.1 User’s Guide 27

Chapter 3 Submitting a PBS Job
3.2.3 Setting Job Characteristics

3.2.3.1 Job Attributes

PBS represents the characteristics of a job as attributes. For example, the name of a job is an
attribute of that job, stored in the value of the job’s Job_Name attribute. Some job attributes
can be set by you, some can be set only by administrators, and some are set only by PBS. For
a complete list of PBS job attributes, see “Job Attributes” on page 374 of the PBS Profes-
sional Reference Guide. Job attributes are case-insensitive.

3.2.3.2 Job Resources

PBS represents the things that a job might use as resources. For example, the number of
CPUs and the amount of memory on an execution host are resources. PBS comes with a set
of built-in resources, and your PBS administrator can define resources. You can see a list of
all built-in PBS resources in “Resources” on page 297 of the PBS Professional Reference
Guide. Resources are case-insensitive.

3.2.3.3 Setting Job Attributes

You can set job attributes and request resources using the following equivalent methods:

• Using specific options to the qsub command at the command line; for example, -e
<path> to set the error path.

• Using PBS directives in the job script; for example, #PBS Error_Path=<path> to
set the error path.

These methods have the same functionality. If you give conflicting options to qsub, the last
option specified overrides any others. Options to the qsub command override PBS direc-
tives, which override defaults. Some job attributes and resources have default values; your
administrator can set default values for some attributes and resources.

After the job is submitted, you can use the qalter command to change the job’s characteris-
tics.

3.2.3.4 Using PBS Directives

A directive has the directive prefix as the first non-whitespace characters. The default for the
prefix is #PBS.

Put all your PBS directives at the top of the script file, above any commands. Any directive
after an executable line in the script is ignored. For example, if your script contains
“@echo”, put that line below all PBS directives.
28 PBS Professional 12.1 User’s Guide

Submitting a PBS Job Chapter 3
3.2.3.4.i Changing the Directive Prefix

By default, the text string “#PBS” is used by PBS to determine which lines in the job file are
PBS directives. The leading “#” symbol was chosen because it is a comment delimiter to all
shell scripting languages in common use on UNIX systems. Because directives look like com-
ments, the scripting language ignores them.

Under Windows, however, the command interpreter does not recognize the ‘#’ symbol as a
comment, and will generate a benign, non-fatal warning when it encounters each “#PBS”
string. While it does not cause a problem for the batch job, it can be annoying or disconcerting
to you. If you use Windows, you may wish to specify a different PBS directive, via either the
PBS_DPREFIX environment variable, or the “-C” option to qsub. The qsub option over-
rides the environment variable. For example, we can direct PBS to use the string “REM

PBS” instead of “#PBS” and use this directive string in our job script:

REM PBS -l walltime=1:00:00

REM PBS -l select=mem=400mb

REM PBS -j oe

date /t

.\my_application

date /t

Given the above job script, we can submit it to PBS in one of two ways:

set PBS_DPREFIX=REM PBS

qsub my_job_script

or

qsub -C “REM PBS” my_job_script

3.2.3.4.ii Caveats and Restrictions for PBS Directives

• You cannot use PBS_DPREFIX as the directive prefix.

• The limit on the length of a directive string is 4096 characters.

3.2.4 Job Tasks

These can be programs or commands. This is where you can specify an application to be run.

3.2.5 Job Script Names

We recommended that you avoid using special characters in job script names. If you must use
them, on UNIX/Linux you must escape them using the backslash (“\”) character.
PBS Professional 12.1 User’s Guide 29

Chapter 3 Submitting a PBS Job
3.2.5.1 How PBS Parses a Job Script

PBS parses a job script in two parts. First, the qsub command scans the script looking for
directives, and stops at the first executable line it finds. This means that if you want qsub to
use a directive, it must be above any executable lines. Any directive below the first execut-
able line is ignored. The first executable line is the first line that is not a directive, whose first
non-whitespace character is not “#”, and is not blank. For information on directives, see sec-
tion 3.2.3.4, “Using PBS Directives”, on page 28.

Second, lines in the script are processed by the job shell. PBS pipes the name of the job script
file as input to the top shell, and the top shell executes the job shell, which runs the script. You
can specify which shell is the top shell; see section 3.3.3.1, “Specifying the Job’s Top Shell”,
on page 32, and, under UNIX/Linux, which shell you want to run the script in the first execut-
able line of the script; see section 3.3.3.2, “Specifying Job Script Shell or Interpreter”, on
page 33.

3.2.5.1.i Comparison Between Equivalent UNIX/Linux and Windows Job
Scripts

The following UNIX/Linux and Windows job scripts produce the same results.

UNIX/Linux:

#!/bin/sh

#PBS -l walltime=1:00:00

#PBS -l select=mem=400mb

#PBS -j oe

date

./my_application

date

Windows:

REM PBS -l walltime=1:00:00

REM PBS -l select=mem=400mb

REM PBS -j oe

date /t

my_application

date /t
30 PBS Professional 12.1 User’s Guide

Submitting a PBS Job Chapter 3
The first line in the Windows script does not contain a path to a shell because you cannot
specify the path to the shell or interpreter inside a Windows job script. See section 3.3.3.2,
“Specifying Job Script Shell or Interpreter”, on page 33.

The remaining lines of both files are almost identical. The primary differences are in file and
directory path specifications, such as the use of drive letters, and slash vs. backslash as the
path separator.

The lines beginning with “#PBS” and “REM PBS” are PBS directives. PBS reads down the
job script until it finds the first line that is not a valid PBS directive, then stops. From there
on, the lines in the script are read by the job shell or interpreter. In this case, PBS sees lines 6-
8 as commands to be run by the job shell.

In our examples above, the “-l <resource>=<value>” lines request specific resources.
Here, we request 1 hour of wall-clock time as a job-wide request, and 400 megabytes (MB) of
memory in a chunk. We will cover requesting resources in Chapter 5, "Allocating Resources
& Placing Jobs", on page 69.

The “-j oe” line requests that PBS join the stdout and stderr output streams of the job
into a single stream. We will cover merging output in "Merging Output and Error Files” on
page 65.

The last three lines are the command lines for executing the programs we wish to run. You can
specify as many programs, tasks, or job steps as you need.

3.3 Submitting a PBS Job

3.3.1 Prerequisites for Submitting Jobs

Before you submit any jobs, set your environment appropriately. Follow the instructions in
section 2.4, “Setting Up Your Environment”, on page 12.

3.3.2 Ways to Submit a PBS Job

You can use the qsub command to submit a normal or interactive job to PBS:

• You can call qsub with a job script; see section 3.3.3, “Submitting a Job Using a Script”,
on page 32

• You can call qsub with an executable and its arguments; see section 3.3.4, “Submitting
Jobs by Specifying Executable”, on page 36

• You can call qsub and give keyboard input; see section 3.3.5, “Submitting Jobs Using
Keyboard Input”, on page 37
PBS Professional 12.1 User’s Guide 31

Chapter 3 Submitting a PBS Job
You can use the xpbs command to submit a normal or interactive job to PBS; see section
16.6, “How to Submit a Job Using xpbs”, on page 330:

• You can run xpbs and give it a job script

• You can run xpbs and give it keyboard input

You can use an Altair front-end product to submit and monitor jobs; go to
www.pbsworks.com.

3.3.3 Submitting a Job Using a Script

You submit a job to PBS using the qsub command. For details on qsub, see “qsub” on page
210 of the PBS Professional Reference Guide. To submit a PBS job, type the following:

• UNIX/Linux shell script:
qsub <name of shell script>

• UNIX/Linux Python or Perl script:
qsub <name of Python or Perl job script>

• Windows command script:
qsub <name of job script>

• Windows Python script:
qsub -S %PBS_EXEC%\bin\pbs_python.exe <name of python job script>

If the path contains any spaces, it must be quoted, for example:

qsub -S “%PBS_EXEC%\bin\pbs_python.exe” <name of python job script>

3.3.3.1 Specifying the Job’s Top Shell

You can can specify the path and name of the shell to use as the top shell for your job. The
rules for specifying the top shell are different for UNIX/Linux and Windows; do not skip the
following subsections numbered 3.3.3.1.i and 3.3.3.1.ii.

The Shell_Path_List job attribute specifies the top shell; the default is your login shell on the
execution host. You can set this attribute using the the following:

• The “-S <path list>” option to qsub

• The #PBS Shell_Path_List=<path list> PBS directive

The option argument path list has this form:

path[@hostf][,path[@host],...]
32 PBS Professional 12.1 User’s Guide

Submitting a PBS Job Chapter 3
You must supply a <path list> if you attempt to set Shell_Path_List, otherwise, you will get
an error. You can specify only one path for any host you name. You can specify only one path
that doesn’t have a corresponding host name.

PBS chooses the path whose host name matches the name of the execution host. If no match-
ing host is found, then PBS chooses the path specified without a host, if one exists.

3.3.3.1.i Specifying Job’s Top Shell Under UNIX/Linux

On UNIX/Linux, the job’s top shell is the one MoM starts when she starts your job, and the
job shell is the shell or interpreter that runs your job script commands.

Under UNIX/Linux, you can use any shell such as csh or sh, by specifying qsub -S
<path>. You cannot use Perl or Python as your top shell.

Example 3-1: Using bash:

qsub -S /bin/bash <script name>

3.3.3.1.ii Specifying Job’s Top Shell Under Windows

On Windows, the job shell is the same as the top shell.

Under Windows, you can specify a shell or an interpreter such as Perl or Python, and if your
job script is Perl or Python, you must specify the language using an option to qsub; you can-
not specify it in the job script.

Example 3-2: Running a Python script on Windows:

qsub -S “C:\Program Files\PBS Pro\exec\bin\pbs_python.exe” <script name>

3.3.3.1.iii Caveats for Specifying the Job’s Top Shell

If you specify a relative path for the top shell, the full path must be available in your PATH
environment variable on the execution host(s). We recommend specifying the full path.

3.3.3.2 Specifying Job Script Shell or Interpreter

3.3.3.2.i Specifying Job Script Shell or Interpreter Under UNIX/Linux

If you don’t specify a shell for the job script, it defaults to /bin/sh. You can use any shell,
and you can use an interpreter such as Perl or Python.

You specify the shell or interpreter in the first line of your job script. The top shell spawns the
specified process, and this process runs the job script. For example, to use /bin/sh to run
the script, use the following as the first line in your job script:

#!/bin/sh
PBS Professional 12.1 User’s Guide 33

Chapter 3 Submitting a PBS Job
To use Perl or Python to run your script, use the path to Perl or Python as the first line in your
script:

#!/usr/bin/perl

or

#!/usr/bin/python

3.3.3.2.ii Specifying Job Script Shell or Interpreter Under Windows

Under Windows, the job shell or interpreter is the same as the top shell or interpreter. You can
specify the top/job shell or interpreter, but not a separate job shell or interpreter. To use a non-
default shell or interpreter, you must specify it using an option to qsub:

qsub -S <path to shell or interpreter> <script name>

3.3.3.3 Examples of Submitting Jobs Using Scripts

Example 3-3: Our job script is named “myjob”. We can submit it by typing:

qsub myjob

and then PBS returns the job ID:

16387.exampleserver.exampledomain

Example 3-4: The following is the contents of the script named “myjob”. In it, we name the
job “testjob”, and run a program called “myprogram”:

#!/bin/sh

#PBS -N testjob

./myprogram

Example 3-5: The simplest way to submit a job is to give the script name as the argument to
qsub, and hit return:

qsub <job script> <ret>

If the script contains the following:

#!/bin/sh

./myapplication

you have simply told PBS to run myapplication.

3.3.3.4 Passing Arguments to Jobs

If you need to pass arguments to a job script, you can do the following:

• Use environment variables in your script, and pass values for the environment variables
34 PBS Professional 12.1 User’s Guide

Submitting a PBS Job Chapter 3
using -v or -V.

For example, to use myinfile as the input to a.out, your job script contains the fol-
lowing:

#PBS -N myjobname

a.out < $INFILE

You can then use the -V option:

qsub -v INFILE=/tmp/myinfile <job script>

For example, to use myinfile and mydata as the input to a.out, your job script con-
tains the following:

#PBS -N myjobname

cat $INFILE $INDATA | a.out

You can then use the -V option:

qsub -v INFILE=/tmp/myinfile, INDATA=/tmp/mydata <job script>

You can export the environment variable first:

export INFILE=/tmp/myinfile

qsub -V <job script>

• Use a here document. For example:
qsub [option] [option] ... <ret>

#PBS <directive>

./jobscript.sh arg1 <^d>

152.examplehost
PBS Professional 12.1 User’s Guide 35

Chapter 3 Submitting a PBS Job
If you need to pass arguments to a job, you can do any of the following:

• Pipe a shell command to qsub.

For example, to directly pass myinfile and mydata as the input to a.out, type the
following, or make them into a shell script:

echo “a.out myinfile mydata” | qsub -l select=...

For example:

echo "jobscript.sh -a arg1 -b arg2" | qsub -l select=...

For example, to use an environment variable to pass myinfile as the input to a.out,
type the following, or make them into a shell script:

export INFILE=/tmp/myinfile

export INDATA=/tmp/mydata

echo “a.out $INFILE $INDATA” | qsub

• Use qsub --<executable> <arguments to executable>. See section
3.3.4, “Submitting Jobs by Specifying Executable”, on page 36.

3.3.4 Submitting Jobs by Specifying Executable

You can run a PBS job by specifying an executable and its arguments instead of a job script.
When you specify only the executable with any options and arguments, PBS starts a shell for
you. To submit a job from the command line, the format is the following:

qsub [options] -- executable [arguments to executable] <return>

For example, to run myprog with the arguments a and b:

qsub -- myprog a b <return>

To run myprog with the arguments a and b, naming the job JobA,

qsub -N JobA -- myprog a b <return>

To use environment variables you define earlier:

export INFILE=/tmp/myinfile

export INDATA=/tmp/mydata

qsub --a.out $INFILE $INDATA
36 PBS Professional 12.1 User’s Guide

Submitting a PBS Job Chapter 3
3.3.5 Submitting Jobs Using Keyboard Input

You can specify that qsub read input from the keyboard. If you run the qsub command, with
the resource requests on the command line, and then press “enter” without naming a job file,
PBS will read input from the keyboard. (This is often referred to as a “here document”.) You
can direct qsub to stop reading input and submit the job by typing on a line by itself a con-
trol-d (UNIX) or control-z, then “enter” (Windows).

Note that, under UNIX, if you enter a control-c while qsub is reading input, qsub will
terminate the process and the job will not be submitted. Under Windows, however, often the
control-c sequence will, depending on the command prompt used, cause qsub to submit
the job to PBS. In such case, a control-break sequence will usually terminate the qsub
command.

qsub <ret>

[directives]

[tasks]

ctrl-D

3.3.6 Submitting Jobs Under Windows

3.3.6.1 Passwords

When running PBS in a password-protected Windows environment, you will need to specify
to PBS the password needed in order to run your jobs. There are two methods of doing this:
(1) by providing PBS with a password once to be used for all jobs (“single signon method”),
or (2) by specifying the password for each job when submitted (“per job method”). Check
with your system administrator to see which method was configured at your site.

3.3.6.1.i Single-Signon Password Method

To provide PBS with a password to be used for all your PBS jobs, use the pbs_password
command. This command can be used whether or not you have jobs enqueued in PBS. The
command usage syntax is:

pbs_password [-s server] [-r] [-d] [user]

When no options are given to pbs_password, the password credential on the default PBS
server for the current user, i.e. the user who executes the command, is updated to the
prompted password. Any user jobs previously held due to an invalid password are not
released.

The available options to pbs_password are:
PBS Professional 12.1 User’s Guide 37

Chapter 3 Submitting a PBS Job
-r
Any user jobs previously held due to an invalid password are released.

-s server
Allows you to specify server where password will be changed.

-d
Deletes the password.

user
The password credential of user user is updated to the prompted password.
If user is not the current user, this action is only allowed if:

1. The current user is root or admin.

2. User user has given the current user explicit access via the ruse-
rok() mechanism:

a The hostname of the machine from which the current user is logged
in appears in the server's hosts.equiv file, or

b The current user has an entry in user's HOMEDIR\.rhosts file.

Note that pbs_password encrypts the password obtained from you before sending it to the
PBS Server. The pbs_password command does not change your password on the current
host, only the password that is cached in PBS.

The pbs_password command is supported only on Windows and all supported Linux plat-
forms on x86 and x86_64.

The pbs_password command has no effect on running jobs. Queued jobs use the new
password.

3.3.6.1.ii Per-job Password Method

If you are running in a password-protected Windows environment, but the single-signon
method has not been configured at your site, then you will need to supply a password with the
submission of each job. You can do this via the qsub command, with the -Wpwd option, and
supply the password when prompted.

qsub -Wpwd <job script>

You will be prompted for the password , which is passed on to the program, then encrypted
and saved securely for use by the job. The password should be enclosed in double quotes.

Keep in mind that in a multi-host job, the password supplied will be propagated to all the sis-
ter hosts. This requires that the password be the same on your accounts on all the hosts. The
use of domain accounts for a multi-host job will be ideal in this case.

Accessing network share drives/resources within a job session also requires that you submit
the job with a password via qsub -W pwd.
38 PBS Professional 12.1 User’s Guide

Submitting a PBS Job Chapter 3
The -Wpwd option to the qsub command is supported only on Windows and all supported
Linux platforms on x86 and x86_64.

3.4 Job Submission Recommendations and
Advice

3.4.1 Trapping Signals in Script

You can trap signals in your job script. For example, you can trap preemption and suspension
signals.

If you want to trap the signal in your job script, the signal may need to be trapped by all of the
job’s shells, depending on the signal.

The signal TERM is useful, because it is ignored by shells, but you can trap it and do useful
things such as write out status.

Example 3-6: Ignore the listed signals:

trap "" 1 2 3 15

Example 3-7: Call the function “goodbye” for the listed signals:

trap goodbye 1 2 3 15

3.5 Job Submission Options

The table below lists the options to the qsub command, and points to an explanation of each:

Table 3-1: Options to the qsub Command

Option Function and Page Reference

-A account_string "Specifying Accounting String” on page 46

-a date_time "Deferring Execution” on page 174

-C “DPREFIX” "Changing the Directive Prefix” on page 29

-c interval "Using Checkpointing” on page 165

-e path "Paths for Output and Error Files” on page 63
PBS Professional 12.1 User’s Guide 39

Chapter 3 Submitting a PBS Job
-h "Holding and Releasing Jobs” on page 167

-I "Running Your Job Interactively” on page 176

-J X-Y[:Z] "Submitting a Job Array” on page 206

-j join "Merging Output and Error Files” on page 65

-k keep "Keeping Output and Error Files on Execution Host” on
page 65

-l resource_list "Requesting Resources” on page 72

-M user_list "Setting Email Recipient List” on page 43

-m MailOptions "Specifying Email Notification” on page 41

-N name "Specifying Job Name” on page 43

-o path "Paths for Output and Error Files” on page 63

-p priority "Setting Your Job’s Priority” on page 175

-P project "Specifying a Job’s Project” on page 44

-q destination "Specifying Server and/or Queue” on page 47

-r value "Allowing Your Job to be Re-run” on page 172

-S path_list "Specifying the Job’s Top Shell” on page 32

-u user_list "Specifying Job Username” on page 44

-V "Exporting All Environment Variables” on page 180

-v variable_list "Exporting Specific Environment Variables” on page 180

-W
<attribute>=<value>

"Setting Job Attributes” on page 28

-W depend=list "Using Job Dependencies” on page 158

-W group_list=list "Specifying Job Group ID” on page 45

Table 3-1: Options to the qsub Command

Option Function and Page Reference
40 PBS Professional 12.1 User’s Guide

Submitting a PBS Job Chapter 3
3.5.1 Specifying Email Notification

For each job, PBS can send mail to designated recipients when that job or subjob reaches spe-
cific points in its lifecycle. There are points in the life of the job where PBS always sends
email, and there are points where you can choose to receive email; see the table below for a
list.

-W stagein=list "Input/Output File Staging” on page 49

-W stageout=list "Input/Output File Staging” on page 49

-W block=opt "Making qsub Wait Until Job Ends” on page 173

-W pwd=”password” "Per-job Password Method” on page 38

-W sandbox=<value> "Staging and Execution Directory: User’s Home vs. Job-
specific” on page 49

-W umask=nnn "Changing UNIX/Linux Job umask” on page 66

-X "Receiving X Output from Interactive Jobs” on page 177

-z "Suppressing Printing Job Identifier to stdout” on page 46

Table 3-2: Points in Job/Reservation Lifecycle when PBS Sends Mail

Point in Lifecycle Always Sent or Optional?

Job cannot be routed Optional

Job is deleted by job owner Optional; depends on qdel
-Wsuppress_email

Job is deleted by someone other than job owner Always

Job is aborted by PBS Optional

Job begins execution Optional

Job ends execution Optional

Table 3-1: Options to the qsub Command

Option Function and Page Reference
PBS Professional 12.1 User’s Guide 41

Chapter 3 Submitting a PBS Job
PBS always sends you mail when your job or subjob is deleted. For job arrays, PBS sends
one email per subjob.

You can restrict the number of job-related emails PBS sends when you delete jobs or subjobs;
see section 3.5.1.3, “Restricting Number of Job Deletion Emails”, on page 43.

3.5.1.1 Specifying Job Lifecycle Email Points

The set of points where PBS sends mail is specified in the Mail_Points job attribute. When
you set this option for a job array, PBS sets the option for each subjob, and sends mail for each
subjob. You can set the Mail_Points attribute using the following methods:

• The -m <mail points> option to qsub

• The #PBS Mail_Points=<mail points> PBS directive

The mail points argument is a string which consists of either the single character “n”, or one
or more of the characters “a”, “b”, and “e”.

a
Send mail when job or subjob is aborted by batch system

b
Send mail when job or subjob begins execution

Example:

Begun execution

e
Send mail when job or subjob ends execution

n
Do not send mail

Example 3-8: PBS sends mail when the job is aborted or ends:

qsub -m ae my_job

#PBS -m ae

Stagein fails Always

All file stageout attempts fail Always

Reservation is confirmed or denied Always

Table 3-2: Points in Job/Reservation Lifecycle when PBS Sends Mail

Point in Lifecycle Always Sent or Optional?
42 PBS Professional 12.1 User’s Guide

Submitting a PBS Job Chapter 3
3.5.1.2 Setting Email Recipient List

The list of recipients to whom PBS sends mail is specified in the Mail_Users job attribute.
You can set the Mail_Points attribute using the following methods:

• The -m <mail recipients> option to qsub

• The #PBS Mail_Users=<mail recipients> PBS directive

The mail recipients argument is a list of user names with optional hostnames in this format:

user[@host][,user[@host],...]

For example:

qsub -M user1@mydomain.com my_job

When you set this option for a job array, PBS sets the option for each subjob, and sends mail
for each subjob.

3.5.1.3 Restricting Number of Job Deletion Emails

By default, when you delete a job or subjob, PBS sends you email. You can use qdel -
Wsuppress_email=<limit> to restrict the number of emails sent to you each time you
use qdel. This option behaves as follows:

limit >=1
You receive at most limit emails.

limit = 0
PBS ignores this option.

limit =-1
You receive no emails.

3.5.1.4 Windows Caveats for Email

PBS on Windows can send email only to addresses that specify an actual hostname that
accepts port 25 (sendmail) requests. For example, if you use the following on Windows:

qsub -M user1@host.mydomain.com

The host named host.mydomain.com must accept port 25 connections.

3.5.2 Specifying Job Name

If you submit a job using a script without specifying a name for the job, the name of the job
defaults to the name of the script. If you submit a job without using a script and without spec-
ifying a name for the job, the job name is STDIN.
PBS Professional 12.1 User’s Guide 43

Chapter 3 Submitting a PBS Job
You can specify the name of a job using the following methods:

• Using qsub -N <job name>

• Using #PBS -N <job name>

For example:

qsub -N myName my_job

#PBS -N myName

The job name can be up to 15 characters in length, and must consist of printable, non-
whitespace characters. The first character must be alphabetic, numeric, hyphen, underscore,
or plus sign.

3.5.3 Specifying a Job’s Project

In PBS, a project is a way to organize jobs independently of users and groups. You can use a
project as a tag to group a set of jobs. Each job can be a member of up to one project.

Projects are not tied to users or groups. One user or group may run jobs in more than one
project. For example, user Bob runs JobA in ProjectA and JobB in ProjectB. User Bill runs
JobC in ProjectA. User Tom runs JobD in ProjectB. Bob and Tom are in Group1, and Bill is
in Group2.

A job’s project attribute specifies the job’s project. See “project” on page 384 of the PBS
Professional Reference Guide. You can set the job’s project attribute in the following ways:

• At submission:

 - Using qsub -P <project name>

 - Via #PBS project=<project name>

• After submission, via qalter -P <project name>; see “qalter” on page 128 of
the PBS Professional Reference Guide

3.5.4 Specifying Job Username

By default PBS runs your job under the username with which you log in. You may need to
run your job under a different username depending on which PBS server runs the job. You
can specify a list of user names under which the job can run. All but one of the entries in the
list must specify the PBS server hostname as well, so that PBS can choose which username to
use by looking at the hostname. You can include one entry in the list that does not specify a
hostname; PBS uses this in the case where the job was sent to a server that is not in your list.
44 PBS Professional 12.1 User’s Guide

Submitting a PBS Job Chapter 3
The list of user names is stored in the User_List job attribute. The value of this attribute
defaults to the user name under which you logged in. There is no limit to the length of the
attribute.

List entries are in the following format:

username@hostname[,username@hostname ...][,username]

You can set the value of User_List in the following ways:

• You can use qsub -u <username>

• You can use a directive: #PBS User_List=<username list>

Example 3-9: Our user is UserS on the submission host HostS, UserA on server ServerA,
and UserB on server ServerB, and is UserC everywhere else. Note that this user must be
UserA on all ExecutionA and UserB on all ExecutionB machines. Then our user can use
“qsub -u UserA@ServerA,UserB@ServerB,UserC” for the job. The job
owner will always be UserS. On UNIX, UserA, UserB, and UserC must each have
.rhosts files at their servers that list UserS.

3.5.4.1 Caveats for Changing Job Username

• Wherever your job runs, you must have permission to run the job under the specified user
name. See section 2.4.4, “Setting Up Your User Authorization”, on page 17.

• User names are limited to 256 characters.

3.5.5 Specifying Job Group ID

Your username can belong to more than one group, but each PBS job is only associated with
one of those groups. By default, the job runs under the primary group. The job’s group is
specified in the group_list job attribute. You can change the group under which your job runs
on the execution host either on the command line or by using a PBS directive:

qsub -W group_list=<group list>

#PBS group_list=<group list>

For example:

qsub -W group_list=grpA,grpB@jupiter my_job

The <group list> argument has the following form:

group[@host][,group[@host],...]

You can specify only one group name per host.
PBS Professional 12.1 User’s Guide 45

Chapter 3 Submitting a PBS Job
You can specify only one group without a corresponding host; that group name is used for
execution on any host not named in the argument list.

The group_list defaults to the primary group of the username under which the job runs.

3.5.5.1 Group Names Under Windows

Under Windows, the primary group is the first group found for the username by PBS when
querying the accounts database.

Under Windows, the default group assigned is determined by what the Windows API
NetUserGetLocalGroup() and NetUserGetGroup() return as first entry. PBS checks the
former output (the local groups) and returns the first group it finds. If the former call does not
return any value, then it proceeds to the latter call (the Global groups). If PBS does not find
any output on the latter call, it uses the default “Everyone”.

We do not recommend depending on always getting “Users” in this case. Sometimes you may
submit a job without the –Wgroup_list option, and get a default group of “None” assigned
to your job.

3.5.6 Specifying Accounting String

You can associate an accounting string with your job by setting the value of the
Account_Name job attribute. This attribute has no default value. You can set the value of
Account_Name at the command line or in a PBS directive:

qsub -A <accounting string>

#PBS Account_Name=<accounting string>

The <accounting string> can be any string of characters; PBS does not attempt to interpret it.

3.5.7 Suppressing Printing Job Identifier to stdout

To suppress printing the job identifier to standard output, use the -z option to qsub. You can
use it at the command line or in a PBS directive:

qsub -z my_job

#PBS -z

There is no associated job attribute for this option.
46 PBS Professional 12.1 User’s Guide

Submitting a PBS Job Chapter 3
3.5.8 Specifying Server and/or Queue

By default, PBS provides a default server and a default queue, so that jobs submitted without
a server or queue specification end up in the default queue at the default server.

If your administrator has configured the PBS server with more than one queue, and has con-
figured those queues to accept jobs from you, you can submit your job to a non-default queue.

• If you will submit jobs mainly to one non-default server, set the PBS_SERVER environ-
ment variable to the name of your preferred server. Once this environment variable is set
to your preferred server, you don’t need to specify that server when you submit a job to it.

• If you will submit jobs mostly to the default server, and just want to submit this one to a
specific queue at a non-default server:

 - Use qsub -q <queue name>@<server name>

 - Use #PBS -q <queue name>@<server name>

• If you will submit jobs mostly to the default server, and just want to submit this one to the
default queue at a non-default server:

 - Use qsub -q @<server name>

 - Use #PBS -q @<server name>

• You can submit your job to a non-default queue at the default server, or the server given
in the PBS_SERVER environment variable if it is defined:

 - Use qsub -q <queue name>

 - Use #PBS -q <queue name>

If the PBS server has no default queue and you submit a job without specifying a queue, the
qsub command will complain.

PBS or your administrator may move your job from one queue to another. You can see which
queue has your job using qstat [job ID]. The job’s Queue attribute contains the name
of the queue where the job resides.

Examples:

qsub -q queue my_job

qsub -q @server my_job

#PBS -q queueName

qsub -q queueName@serverName my_job

qsub -q queueName@serverName.domain.com my_job
PBS Professional 12.1 User’s Guide 47

Chapter 3 Submitting a PBS Job
3.5.8.1 Using or Avoiding Dedicated Time

Dedicated time is one or more specific time periods defined by the administrator. These are
not repeating time periods. Each one is individually defined.

During dedicated time, the only jobs PBS starts are those in special dedicated time queues.
PBS schedules non-dedicated jobs so that they will not run over into dedicated time. Jobs in
dedicated time queues are also scheduled so that they will not run over into non-dedicated
time. PBS will attempt to backfill around the dedicated-non-dedicated time borders.

PBS uses walltime to schedule within and around dedicated time. If a job is submitted with-
out a walltime to a non-dedicated-time queue, it will not be started until all dedicated time
periods are over. If a job is submitted to a dedicated-time queue without a walltime, it will
never run.

To submit a job to be run during dedicated time, use the -q <queue name> option to
qsub and give the name of the dedicated-time queue you wish to use as the queue name.
Queues are created by the administrator; see your administrator for queue name(s).
48 PBS Professional 12.1 User’s Guide

Chapter 4
Job Input and Output Files

4.1 Introduction to Job File I/O in PBS

PBS allows you to manage input files, output files, standard output, and standard error. PBS
has two mechanisms for handling job files; you use staging for input and output files, and you
select whether stdout and/or stderr are copied back using the Keep_Files job attribute.

4.2 Input/Output File Staging

File staging is a way to specify which input files should be copied onto the execution host
before the job starts, and which output files should be copied off the execution host when it
finishes.

4.2.1 Staging and Execution Directory: User’s Home vs.
Job-specific

The job’s staging and execution directory is the directory to which files are copied before the
job runs, and from which output files are copied after the job has finished. This directory is
either your home directory or a job-specific directory created by PBS just for this job. If you
use job-specific staging and execution directories, you don’t need to have a home directory on
each execution host, as long as those hosts are configured properly. In addition, each job gets
its own staging and execution directory, so you can more easily avoid filename collisions.
PBS Professional 12.1 User’s Guide 49

Chapter 4 Job Input and Output Files
This table lists the differences between using your home directory for staging and execution
and using a job-specific staging and execution directory created by PBS.

4.2.2 Using Job-specific Staging and Execution
Directories

4.2.2.1 Setting the Job’s Staging and Execution Directory

The job’s sandbox attribute controls whether PBS creates a unique job-specific staging and
execution directory for this job. If the job’s sandbox attribute is set to PRIVATE, PBS cre-
ates a unique staging and execution directory for the job. If sandbox is unset, or is set to
HOME, PBS uses your home directory as the job’s staging and execution directory. By
default, the sandbox attribute is not set.

You can set the sandbox attribute via qsub, or through a PBS directive. For example:

qsub -Wsandbox=PRIVATE

Table 4-1: Differences Between User’s Home and Job-specific Directory
for Staging and Execution

Question Regarding Action,
Requirement, or Setting

User’s Home
Directory

Job-specific
Directory

Does PBS create a job-specific staging and
execution directory?

No Yes

User’s home directory must exist on execu-
tion host(s)?

Yes No

Standard out and standard error automati-
cally deleted when qsub -k option is
used?

No Yes

When are staged-out files are deleted? Successfully staged-
out files are deleted;
others go to “undeliv-
ered”

Only after all are
successfully
staged out

Staging and execution directory deleted
after job finishes?

No Yes

What is job’s sandbox attribute set to? HOME or not set PRIVATE
50 PBS Professional 12.1 User’s Guide

Job Input and Output Files Chapter 4
The job’s sandbox attribute cannot be altered while the job is executing.

4.2.2.2 The Job’s jobdir Attribute and the PBS_JOBDIR
Environment Variable

The job’s jobdir attribute is a read-only attribute, set to the pathname of the job’s staging and
execution directory on the primary host. You can view this attribute by using qstat -f,
only while the job is executing. The value of jobdir is not retained if a job is rerun; it is unde-
fined whether jobdir is visible or not when the job is not executing.

The environment variable PBS_JOBDIR is set to the pathname of the staging and execution
directory on the primary execution host. PBS_JOBDIR is added to the job script process,
any job tasks, and the prologue and epilogue.

Table 4-2: Effect of Job’s sandbox Attribute on Location of Staging and
Execution Directory

Job’s sandbox
attribute

Effect

not set Job’s staging and execution directory is your home directory

HOME Job’s staging and execution directory is your home directory

PRIVATE Job’s staging and execution directory is a job-specific directory
created by PBS.

If the qsub -k option is used, output and error files are retained
on the primary execution host in the staging and execution direc-
tory. This directory is removed, along with all of its contents,
when the job finishes.
PBS Professional 12.1 User’s Guide 51

Chapter 4 Job Input and Output Files
4.2.3 Attributes and Environment Variables Affecting
Staging

The following attributes and environment variables affect staging and execution.

Table 4-3: Attributes and Environment Variables Affecting Staging

Job’s Attribute or
Environment

Variable
Effect

sandbox attribute Determines whether PBS uses user’s home directory or cre-
ates job-specific directory for staging and execution. User-
settable per job via qsub -W or through a PBS directive.

stagein attribute Sets list of files or directories to be staged in. User-settable
per job via qsub -W or through a PBS directive.

stageout attribute Sets list of files or directories to be staged out. User-settable
per job via qsub -W or through a PBS directive.

Keep_Files attribute Determines whether output and/or error files remain on exe-
cution host. User-settable per job via qsub -k or through a
PBS directive. If the Keep_Files attribute is set to o and/or
e (output and/or error files remain in the staging and execu-
tion directory) and the job’s sandbox attribute is set to PRI-

VATE, standard out and/or error files are removed, when the
staging directory is removed at job end along with its con-
tents.

jobdir attribute Set to pathname of staging and execution directory on pri-
mary execution host. Read-only; viewable via qstat -f.

PBS_JOBDIR environ-
ment variable

Set to pathname of staging and execution directory on pri-
mary execution host. Added to environments of job script
process, job tasks, and prologue and epilogue.

TMPDIR environment
variable

Location of job-specific scratch directory.
52 PBS Professional 12.1 User’s Guide

Job Input and Output Files Chapter 4
4.2.4 Specifying Files To Be Staged In or Staged Out

You can specify files to be staged in before the job runs and staged out after the job runs by
setting the job’s stagein and stageout attributes. You can use options to qsub, or directives
in the job script:

qsub -Wstagein=<stagein file list> -Wstageout=<stageout file list>

#PBS stagein=<file list>

#PBS stageout=<file list>

The file list has the following form:

execution_path@hostname:storage_path[,...]

for both stagein and stageout.

The name execution_path is the name of the file in the job’s staging and execution directory
(on the execution host). The execution_path can be relative to the job’s staging and execution
directory, or it can be an absolute path.

The ‘@’ character separates the execution specification from the storage specification.

The name storage_path is the file name on the host specified by hostname. For stagein, this
is the location where the input files come from. For stageout, this is where the output files end
up when the job is done. You must specify a hostname. The name can be absolute, or it can
be relative to your home directory on the machine named hostname.

For stagein, the direction of travel is from storage_path to execution_path.

For stageout, the direction of travel is from execution_path to storage_path.

The following example shows how to use a directive to stagein a file named grid.dat
located in the directory /u/user1 on the host called serverA. The staged-in file is copied to
the staging and execution directory and given the name dat1. Since execution_path is eval-
uated relative to the staging and execution directory, it is not necessary to specify a full path-
name for dat1.

#PBS -W stagein=dat1@serverA:/u/user1/grid.dat ...

To use the qsub option to stage in the file residing on myhost, in /Users/myhome/
mydata/data1, calling it input_data1 in the staging and execution directory:

qsub -W stagein=input_data1@myhost:/Users/myhome/mydata/data1

To stage more than one file or directory, use a comma-separated list of paths, and enclose the
list in double quotes. For example, to stage two files data1 and data2 in:

qsub -W stagein=“input1@hostA:/myhome/data1,input2@hostA:/myhome/data1”
PBS Professional 12.1 User’s Guide 53

Chapter 4 Job Input and Output Files
4.2.5 Caveats and Requirements for Staging

4.2.5.1 Staging and Windows Paths

Under Windows, if your path contains special characters such as spaces, backslashes (\),
colons (:), or drive letter specifications, enclose the staging specification in double quotes.
For example, to stage the grid.dat file on drive D at hostB to the execution file named “dat1”
on drive C:

qsub -W stagein=”dat1@hostB:D\Documents and Settings\grid.dat”

4.2.5.2 Path Names for Staging

• It is advisable to use an absolute pathname for the storage_path. Remember that the path
to your home directory may be different on each machine, and that when using sandbox
= PRIVATE, you may or may not have a home directory on all execution machines.

• Always use a relative pathname for execution_path when the job’s staging and execution
directory is created by PBS, meaning when using a job-specific staging and execution
directory, do not use an absolute path in execution_path.

4.2.5.3 Required Permissions

You must have read permission for any files or directories that you will stage in, and write
permission for any files or directories that you will stage out.

4.2.5.4 Warning About Ampersand

You cannot use the ampersand (“&”) in any staging path. Staging will fail.

4.2.5.5 Interactive Jobs and File I/O

When an interactive job finishes, staged files may not have been copied back yet.

4.2.5.6 Copying Directories Into and Out Of the Staging and
Execution Directory

You can stage directories into and out of the staging and execution directory the same way
you stage files. The storage_path and execution_path for both stagein and stageout can be a
directory. If you stagein or stageout a directory, PBS copies that directory along with all of
its files and subdirectories. At the end of the job, the directory, including all files and subdi-
rectories, is deleted. This can create a problem if multiple jobs are using the same directory.
54 PBS Professional 12.1 User’s Guide

Job Input and Output Files Chapter 4
4.2.5.7 Wildcards In File Staging

You can use wildcards when staging files and directories, according to the following rules.

• The asterisk “*” matches one or more characters.

• The question mark “?” matches a single character.

• All other characters match only themselves.

• Wildcards inside of quote marks are expanded.

• Wildcards cannot be used to match UNIX files that begin with period “.” or Windows
files that have the “SYSTEM” or “HIDDEN” attributes.

• When using the qsub command line on UNIX, you must prevent the shell from
expanding wildcards. For some shells, you can enclose the pathnames in double
quotes. For some shells, you can use a backslash before the wildcard.

• Wildcards can only be used in the source side of a staging specification. This means
they can be used in the storage_path specification for stagein, and in the
execution_path specification for stageout.

• When staging using wildcards, the destination must be a directory. If the destination is
not a directory, the result is undefined. So for example, when staging out all .out
files, you must specify a directory for storage_path.

• Wildcards can only be used in the final path component, i.e. the basename.

• When wildcards are used during stagein, PBS will not automatically delete staged files
at job end. Note that if PBS created the staging and execution directory, that directory
and all its contents are deleted at job end.
PBS Professional 12.1 User’s Guide 55

Chapter 4 Job Input and Output Files
4.2.6 Examples of File Staging

Example 4-1: Stage out all files from the execution directory to a specific directory:

UNIX

-W stageout=*@myworkstation:/user/project1/case1

Windows

-W stageout=*@mypc:E:\project1\case1

Example 4-2: Stage out specific types of result files and disregard the scratch and other tem-
porary files after the job terminates. The result files that are interesting for this example
end in '.dat':

UNIX

-W stageout=*.dat@myworkstation:project3/data

Windows

-W stageout=*.dat@mypc:C:\project\data

Example 4-3: Stage in all files from an application data directory to a subdirectory:

UNIX

-W stagein=jobarea@myworkstation:crashtest1/*

Windows

-W stagein=jobarea@mypc:E:\crashtest1*

Example 4-4: Stage in data from files and directories matching “wing*”:

UNIX

-W stagein=.@myworkstation:848/wing*

Windows

-W stagein=.@mypc:E:\flowcalc\wing*

Example 4-5: Stage in .bat and .dat files to jobarea:

UNIX:

-W stagein=jobarea@myworkstation:/users/me/crash1.?at

Windows:

-W stagein=jobarea@myworkstation:C:\me\crash1.?at
56 PBS Professional 12.1 User’s Guide

Job Input and Output Files Chapter 4
4.2.6.1 Example of Using Job-specific Staging and Execution
Directories

In this example, you want the file “jay.fem” to be delivered to the job-specific staging and
execution directory given in PBS_JOBDIR, by being copied from the host “submithost”.
The job script is executed in PBS_JOBDIR and “jay.out” is staged out from PBS_JOBDIR
to your home directory on the submittal host (i.e., “hostname”):

qsub -Wsandbox=PRIVATE -Wstagein=jay.fem@submit- host:jay.fem -Wstage-
out=jay.out@submithost:jay.out

4.2.7 Summary of the Job’s Lifecycle

This is a summary of the steps performed by PBS. The steps are not necessarily performed in
this order.

• On each execution host, if specified, PBS creates a job-specific staging and execution
directory.

• PBS sets PBS_JOBDIR and the job’s jobdir attribute to the path of the job’s staging and
execution directory.

• On each execution host allocated to the job, PBS creates a job-specific temporary direc-
tory.

• PBS sets the TMPDIR environment variable to the pathname of the temporary directory.

• If any errors occur during directory creation or the setting of variables, the job is
requeued.

• PBS stages in any files or directories.

• The prologue is run on the primary execution host, with its current working directory set
to PBS_HOME/mom_priv, and with PBS_JOBDIR and TMPDIR set in its environ-
ment.

• The job is run as you on the primary execution host.

• The job’s associated tasks are run as you on the execution host(s).

• The epilogue is run on the primary execution host, with its current working directory set
to the path of the job’s staging and execution directory, and with PBS_JOBDIR and
TMPDIR set in its environment.

• PBS stages out any files or directories.

• PBS removes any staged files or directories.

• PBS removes any job-specific staging and execution directories and their contents, and
PBS Professional 12.1 User’s Guide 57

Chapter 4 Job Input and Output Files
all TMPDIRs and their contents.

• PBS writes the final job accounting record and purges any job information from the
Server’s database.

4.2.8 Detailed Description of Job’s Lifecycle

4.2.8.1 Creation of TMPDIR

For each host allocated to the job, PBS creates a job-specific temporary scratch directory for
the job. If the temporary scratch directory cannot be created, the job is aborted.

4.2.8.2 Choice of Staging and Execution Directories

If the job’s sandbox attribute is set to PRIVATE, PBS creates job-specific staging and execu-
tion directories for the job. If the job’s sandbox attribute is set to HOME, or is unset, PBS
uses your home directory for staging and execution.

4.2.8.2.i Job-specific Staging and Execution Directories

If the staging and execution directory cannot be created the job is aborted. If PBS fails to cre-
ate a staging and execution directory, see the system administrator.

You should not depend on any particular naming scheme for the new directories that PBS cre-
ates for staging and execution.

4.2.8.2.ii User’s Home Directory as Staging and Execution Directory

You must have a home directory on each execution host. The absence of your home directory
is an error and causes the job to be aborted.

4.2.8.3 Setting Environment Variables and Attributes

PBS sets PBS_JOBDIR and the job’s jobdir attribute to the pathname of the staging and exe-
cution directory. The TMPDIR environment variable is set to the pathname of the job-spe-
cific temporary scratch directory.

4.2.8.4 Staging Files Into Staging and Execution Directories

PBS evaluates execution_path and storage_path relative to the staging and execu-
tion directory given in PBS_JOBDIR, whether this directory is your home directory or a job-
specific directory created by PBS. PBS copies the specified files and/or directories to the
job’s staging and execution directory.
58 PBS Professional 12.1 User’s Guide

Job Input and Output Files Chapter 4
4.2.8.5 Running the Prologue

The MoM’s prologue is run on the primary host as root, with the current working directory set
to PBS_HOME/mom_priv, and with PBS_JOBDIR and TMPDIR set in its environment.

4.2.8.6 Job Execution

PBS runs the job script on the primary host as you. PBS also runs any tasks created by the job
as you. The job script and tasks are executed with their current working directory set to the
job's staging and execution directory, and with PBS_JOBDIR and TMPDIR set in their envi-
ronment.

4.2.8.7 Standard Out and Standard Error

The job's stdout and stderr files are created directly in the job's staging and execution
directory on the primary execution host.

4.2.8.7.i Job-specific Staging and Execution Directories

If the qsub -k option is used, the stdout and stderr files will not be automatically cop-
ied out of the staging and execution directory at job end - they will be deleted when the direc-
tory is automatically removed.

4.2.8.7.ii User’s Home Directory as Staging and Execution Directory

If the -k option to qsub is used, standard out and/or standard error files are retained on the
primary execution host instead of being returned to the submission host, and are not deleted
after job end.

4.2.8.8 Running the Epilogue

PBS runs the epilogue on the primary host as root. The epilogue is executed with its current
working directory set to the job's staging and execution directory, and with PBS_JOBDIR
and TMPDIR set in its environment.

4.2.8.9 Staging Files Out and Removing Execution Directory

When PBS stages files out, it evaluates execution_path and storage_path relative to
PBS_JOBDIR. Files that cannot be staged out are saved in PBS_HOME/undelivered.
PBS Professional 12.1 User’s Guide 59

Chapter 4 Job Input and Output Files
4.2.8.9.i Job-specific Staging and Execution Directories

If PBS created job-specific staging and execution directories for the job, it cleans up at the
end of the job. The staging and execution directory and all of its contents are removed, on all
execution hosts.

4.2.8.10 Removing TMPDIRs

PBS removes all TMPDIRs, along with their contents.

4.2.9 Staging with Job Arrays

File staging is supported for job arrays. See “File Staging for Job Arrays” on page 207.

4.2.10 Using xpbs for File Staging

Using xpbs to set up file staging directives may be easier than using the command line. On
the Submit Job window, in the miscellany options section (far left, center of window) click on
the file staging button. This will launch the File Staging dialog box (shown below) in which
you will be able to set up the file staging you desire.

The File Selection Box will be initialized with your current working directory. If you wish to
select a different directory, double-click on its name, and xpbs will list the contents of the
new directory in the File Selection Box. When the correct directory is displayed, simply click
on the name of the file you wish to stage (in or out). Its name will be written in the File
Selected area.

Next, click either of the Add file selected... buttons to add the named file to the stagein or sta-
geout list. Doing so will write the file name into the corresponding area on the lower half of
the File Staging window. Now you need to provide location information. For stagein, type in
the path and filename where you want the named file placed. For stageout, specify the host-
name and pathname where you want the named file delivered. You may repeat this process for
as many files as you need to stage.

When you are done selecting files, click the OK button.

4.2.11 Stagein and Stageout Failure

4.2.11.1 File Stagein Failure

When stagein fails, the job is placed in a 30-minute wait to allow you time to fix the problem.
Typically this is a missing file or a network outage. Email is sent to the job owner when the
problem is detected. Once the problem has been resolved, the job owner or a PBS Operator
60 PBS Professional 12.1 User’s Guide

Job Input and Output Files Chapter 4
may remove the wait by resetting the time after which the job is eligible to be run via the -a
option to qalter. The server will update the job’s comment with information about why the
job was put in the wait state. When the job is eligible to run, it may run on different vnodes.

4.2.11.2 File Stageout Failure

When stageout encounters an error, there are three retries. PBS waits 1 second and tries again,
then waits 11 seconds and tries a third time, then finally waits another 21 seconds and tries a
fourth time. Email is sent to the job owner if all attempts fail. Files that cannot be staged out
are saved in PBS_HOME/undelivered. See section 4.3.7.1, “Non-delivery of Output”, on
page 67.

4.3 Managing Output and Error Files

4.3.1 Default Behavior

By default, PBS copies the standard output (stdout) and standard error (stderr) files
back to $PBS_O_WORKDIR on the submission host when a job finishes. When qsub is
run, it sets $PBS_O_WORKDIR to the current working directory where the qsub command
is executed. This means that if you want your job’s stdout and stderr files to be deliv-
ered to your submission directory, you do not need to do anything.

Four options to the qsub command control where stdout and stderr are created and
whether and where they are copied when the job is finished. These options are the following:

sandbox
By default, PBS runs the job script in the owner’s home directory. If sand-

box is set to PRIVATE, PBS creates a job-specific execution directory, and
runs the job script there. See section 4.2.2.1, “Setting the Job’s Staging and
Execution Directory”, on page 50.

k
Specifies whether and which of stdout and stderr is retained in the
job’s execution directory. When set, this option overrides o and e. See sec-
tion 4.3.5, “Keeping Output and Error Files on Execution Host”, on page
65.

o
Specifies destination for stdout. Overridden by k when k is set. See sec-
tion 4.3.2, “Paths for Output and Error Files”, on page 63.
PBS Professional 12.1 User’s Guide 61

Chapter 4 Job Input and Output Files
e
Specifies destination for stderr. Overridden by k when k is set. See sec-
tion 4.3.2, “Paths for Output and Error Files”, on page 63.

The following table shows how these options control creation and copying of stdout and
stderr:

• You can specify a path for stdout and/or stderr: see section 4.3.2, “Paths for Output
and Error Files”, on page 63.

• You can merge stdout and stderr: see section 4.3.4, “Merging Output and Error

Table 4-4: How k, sandbox, o, and e Options to qsub Affect stdout
and stderr

sandbox k o, e
Where stdout,

stderr are created
Where stdout,

stderr are copied

HOME or
unset

unset unset PBS_HOME/spool PBS_O_WORKDIR,
which is job submission
directory

HOME or
unset

unset <path> PBS_HOME/spool Destination specified in -o
<path> and/or -e
<path>

HOME or
unset

<path> unset Job submitter’s home
directory

Not copied; left in submit-
ter’s home directory

HOME or
unset

<path> <path> Job submitter’s home
directory

Not copied; left in submit-
ter’s home directory

PRIVATE unset unset Job-specific execution
directory created by PBS

PBS_O_WORKDIR,
which is job submission
directory

PRIVATE unset <path> Job-specific execution
directory created by PBS

Destination specified in -o
<path> and/or -e
<path>

PRIVATE <path> unset Job-specific execution
directory created by PBS

Not copied; left in job-spe-
cific execution directory

PRIVATE <path> <path> Job-specific execution
directory created by PBS

Not copied; left in job-spe-
cific execution directory
62 PBS Professional 12.1 User’s Guide

Job Input and Output Files Chapter 4
Files”, on page 65.

• You can prevent creation of stdout and/or stderr: see section 4.3.3, “Avoiding Cre-
ation of stdout and/or stderr”, on page 64.

• You can choose whether to retain stdout and/or stderr on the execution host: see
section 4.3.5, “Keeping Output and Error Files on Execution Host”, on page 65.

4.3.2 Paths for Output and Error Files

4.3.2.1 Default Paths

By default, PBS names the output and error files for your job using the job name and the job’s
sequence number. The output file name is specified in the Output_Path job attribute, and the
error file name is specified in the Error_Path job attribute.

The default output filename has this format:

<job name>.o<sequence number>

The default error filename has this format:

<job name>.e<sequence number>

The job name, if not specified, defaults to the script name. For example, if the job ID is
1234.exampleserver and the script name is “myscript”, the error file is named
myscript.e1234. If you specify a name for your job, the script name is replaced with the
job name. For example, if you name your job “fixgamma”, the output file is named fix-
gamma.o1234.

For details on naming your job, see section 3.5.2, “Specifying Job Name”, on page 43.

4.3.2.2 Specifying Paths

You can specify the path and name for the output and error files for each job, by setting the
value for the Output_Path and Error_Path job attributes. You can set these attributes using
the following methods:

• Use the -o <output path> and -e <error path> options to qsub

• Use #PBS Output_Path=<path> and #PBS Error_Path=<path> directives in
the job script

The path argument has the following form:

[hostname:]path_name

where hostname is the name of a host and path_name is the path name on that host.
PBS Professional 12.1 User’s Guide 63

Chapter 4 Job Input and Output Files
You can specify relative or absolute paths. If you specify only a file name, it is assumed to be
relative to your home directory. Do not use variables in the path.

The following examples show how you can specify paths:

#PBS -o /u/user1/myOutputFile

#PBS -e /u/user1/myErrorFile

qsub -o myOutputFile my_job

qsub -o /u/user1/myOutputFile my_job

qsub -o myWorkstation:/u/user1/myOutputFile my_job

qsub -e myErrorFile my_job

qsub -e /u/user1/myErrorFile my_job

qsub -e myWorkstation:/u/user1/myErrorFile my_job

4.3.2.3 Specifying Paths from Windows Hosts

If you submit your job from a Windows host, you may end up using special characters such as
spaces, backslashes (“\”), and colons (“:”) for specifying pathnames, and you may need drive
letter specifications. The following examples are allowed:

qsub -o \temp\my_out job.scr

qsub -e "myhost:e:\Documents and Settings\user\Desktop\output"

The error output of the example job is to be copied onto the e: drive on myhost using the
path "\Documents and Settings\user\Desktop\output".

4.3.2.4 Caveats for Paths

Enclose arguments to qsub in quotes if the arguments contain spaces.

4.3.3 Avoiding Creation of stdout and/or stderr

For each job, PBS always creates the job’s output and error files. The location where files are
created is listed in Table 4-4, “How k, sandbox, o, and e Options to qsub Affect stdout and
stderr,” on page 62.

If you do not want stdout and/or stderr, you can redirect them to /dev/null within
the job script. For example, to redirect stdout and stderr to /dev/null:

exec >&/dev/null 1>&2
64 PBS Professional 12.1 User’s Guide

Job Input and Output Files Chapter 4
4.3.4 Merging Output and Error Files

By default, PBS creates separate standard output and standard error files for each job. You
can specify that stdout and stderr are to be joined by setting the job’s Join_Path
attribute. The default for the attribute is n, meaning that no joining takes place. You can set
the attribute using the following methods:

• Use qsub -j <joining option>

• Use #PBS Join_Path=<joining option>

You can specify one of the following joining options:

oe
Standard output and standard error are merged, intermixed, into a single
stream, which becomes standard output.

eo
Standard output and standard error are merged, intermixed, into a single
stream, which becomes standard error.

n
Standard output and standard error are not merged.

For example, to merge standard output and standard error for my_job into standard output:

qsub -j oe my_job

#PBS -j oe

4.3.5 Keeping Output and Error Files on Execution Host

By default, PBS copies stdout and stderr to the job’s submission directory. You can
specify that PBS keeps stdout, stderr, or both in the job’s execution directory on the
execution host. This behavior is controlled by the job’s Keep_Files attribute. You can set
this attribute to one of the following values:

e
PBS keeps stderr in the job’s staging and execution directory on the pri-
mary execution host.

o
PBS keeps stdout in the job’s staging and execution directory on the pri-
mary execution host.

eo, oe
PBS keeps both standard output and standard error on the primary execu-
tion host, in the job's staging and execution directory.
PBS Professional 12.1 User’s Guide 65

Chapter 4 Job Input and Output Files
n
PBS does not keep either file on the execution host.

The default value for Keep_Files is “n”.

You can set the value of the Keep_Files job attribute using the following methods:

• Use qsub -k <keep option>

• Use #PBS Keep_Files=<keep option>

For example, you can use either of the following to keep both standard output and standard
error on the execution host:

qsub -k oe my_job

#PBS -k oe

4.3.5.1 Caveats for Keeping Files on Execution Host

• When a job finishes, its job-specific execution directory, and all files in that directory, are
deleted. If you specified that stdout and/or stderr should be kept on the execution
host, any files you specified are deleted as well.

• The qsub -k option overrides the -o and -e options. For example, if you specify qsub
-k o -o <path>, stdout is kept on the execution host, and is not copied to the path
you specified.

4.3.6 Changing UNIX/Linux Job umask

On UNIX/Linux, whenever your job copies or creates a file or directory on the execution host,
MoM uses umask to determine the permissions for the file or directory. If you do not specify
a value for umask, MoM uses the system default. You can specify a value using the follow-
ing methods:

• Use qsub -W umask=<value>

• Use #PBS umask=<value>

This applies when staging or copying files or directories to the execution host, or writing
stdout or stderr on the execution host.

In the following example, we set umask to 022, to have files created with write permission
for owner only. The desired permissions are -rw-r--r--.

qsub -W umask=022 my_job

#PBS -W umask=022
66 PBS Professional 12.1 User’s Guide

Job Input and Output Files Chapter 4
4.3.6.1 Caveats

This feature does not apply to Windows.

4.3.7 Troubleshooting File Delivery

File delivery is handled by MoM on the execution host. For a description of how file delivery
works, see section 13.9, "Setting File Transfer Mechanism" on page 897 in the PBS Profes-
sional Administrator’s Guide.

For troubleshooting file delivery, see section 13.9.4, "Troubleshooting File Transfer" on page
903 in the PBS Professional Administrator’s Guide.

4.3.7.1 Non-delivery of Output

If the output of a job cannot be delivered to you, it is saved in a special directory named
PBS_HOME/undelivered and mail is sent to you. The typical causes of non-delivery are:

1. The destination host is not trusted and you do not have a .rhosts file.

2. An improper path was specified.

3. A directory in the specified destination path is not writable.

4. Your .cshrc on the destination host generates output when executed.

5. The path specified by PBS_SCP in pbs.conf is incorrect.

6. The PBS_HOME/spool directory on the execution host does not have the correct
permissions. This directory must have mode 1777 drwxrwxrwxt (on UNIX) or “Full
Control” for “Everyone” (on Windows).

4.3.8 Caveats for Output and Error Files

4.3.8.1 Retaining Files on Execution Host

When PBS creates a job-specific staging and execution directory and you use the -k option to
qsub or you specify o and/or e in the Keep_Files attribute, the files you requested kept on
the execution host are deleted when the job-specific staging and execution directory is deleted
at the end of the job.
PBS Professional 12.1 User’s Guide 67

Chapter 4 Job Input and Output Files
4.3.8.2 Standard Output and Error Appended When Job is
Rerun

If your job runs and writes to stdout or stderr, and then is rerun, meaning that another
job with the same name is run, PBS appends the stdout of the second run to that of the first,
and appends the stderr of the second run to that of the first.

4.3.8.3 Windows Mapped Drives and PBS

In Windows, when you map a drive, it is mapped locally to your session. The mapped drive
cannot be seen by other processes outside of your session. A drive mapped on one session
cannot be un-mapped in another session even if the user is the same. This has implications for
running jobs under PBS. Specifically if you map a drive, chdir to it, and submit a job from
that location, the vnode that executes the job may not be able to deliver the files back to the
same location from which you issued qsub. The workaround is to tell PBS to deliver the files
to a local, non-mapped, directory. Use the “-o” or “-e” options to qsub to specify the direc-
tory location for the job output and error files. For details see section 4.3.2, “Paths for Output
and Error Files”, on page 63.

4.3.8.4 Harmless csh Error Message

If your login shell is csh the following message may appear in the standard output of a job:

Warning: no access to tty, thus no job control in this shell

This message is produced by many csh versions when the shell determines that its input is
not a terminal. Short of modifying csh, there is no way to eliminate the message. Fortu-
nately, it is just an informative message and has no effect on the job.

4.3.8.5 Interactive Jobs and File I/O

When an interactive job finishes, stdout and/or stderr may not have been copied back
yet.

4.3.8.6 Write Permissions Required

• You must have write permission for any directory where you will copy stdout or
stderr.

• Root must be able to write in PBS_HOME/spool.
68 PBS Professional 12.1 User’s Guide

Chapter 5
Allocating Resources & Placing
Jobs

5.1 What is a Vnode?

A virtual node, or vnode, is an abstract object representing a set of resources which form a
usable part of a machine. This could be an entire host, or a nodeboard or a blade. A single host
can be made up of multiple vnodes.

A host is any computer. Execution hosts used to be called nodes, and are still often called
nodes outside of the PBS documentation. PBS views hosts as being composed of one or more
vnodes.

PBS manages and schedules each vnode independently. Jobs run on one or more vnodes.
Each vnode has its own set of attributes; see “Vnode Attributes” on page 365 of the PBS Pro-
fessional Reference Guide.

5.1.1 Deprecated Vnode Types

All vnodes are treated alike, and are treated the same as what were once called “time-shared
nodes”. The types “time-shared” and “cluster” are deprecated. The :ts suffix is deprecated.
It is silently ignored, and not preserved during rewrite.

The vnode attribute ntype was only used to distinguish between PBS and Globus vnodes.
Globus can still send jobs to PBS, but PBS no longer supports sending jobs to Globus. The
ntype attribute is read-only.
PBS Professional 12.1 User’s Guide 69

Chapter 5 Allocating Resources & Placing Jobs
5.2 PBS Resources

5.2.1 Introduction to PBS Resources

In this section, "Introduction to PBS Resources", we will briefly cover the basics of PBS
resources. For a thorough discussion, see section , "Resources", on page 297 of the PBS Pro-
fessional Administrator’s Guide, especially sections 5.4 and 5.5. For a complete description
of each PBS resource, see “Resources” on page 297 of the PBS Professional Reference Guide.

PBS resources represent things such as CPUs, memory, application licenses, switches, scratch
space, and time. They can also represent whether or not something is true, for example,
whether a machine is dedicated to a particular project.

PBS provides a set of built-in resources, and allows the administrator to define additional cus-
tom resources. Custom resources are used for application licenses, scratch space, etc., and are
defined by the administrator. Custom resources are used the same way built-in resources are
used. PBS supplies the following types of resources:

Boolean

duration

float

long

size

string

string_array

See “List of Formats” on page 399 of the PBS Professional Reference Guide for a description
of each resource type.

See “Built-in Resources” on page 299 of the PBS Professional Reference Guide for a listing
of built-in resources.

For some systems, PBS creates specific custom resources; see “Custom Cray Resources” on
page 308 of the PBS Professional Reference Guide.

The administrator can specify which resources are available at the server, each queue, and
each vnode. Resources defined at the queue or server level apply to an entire job. Resources
defined at the vnode level apply only to the part of the job running on that vnode.

Jobs can request resources. The scheduler matches requested resources with available
resources, according to rules defined by the administrator. PBS always places jobs where it
finds the resources requested by the job. PBS will not place a job where that job would use
70 PBS Professional 12.1 User’s Guide

Allocating Resources & Placing Jobs Chapter 5
more resources than PBS thinks are available. For example, if you have two jobs, each
requesting 1 CPU, and you have one vnode with 1 CPU, PBS will run only one job at a time
on the vnode.

PBS can enforce limits on resource usage by jobs; see section 5.5, “Limits on Resource
Usage”, on page 85.

5.2.2 Terminology

Chunk
A set of resources allocated as a unit to a job. Specified inside a selection
directive. All parts of a chunk come from the same host. In a typical MPI
(Message-Passing Interface) job, there is one chunk per MPI process.

Chunk-level resource, host-level resource
A resource that is available at the host level, for example, CPUs or memory.
Chunk resources are requested inside of a selection statement. The
resources of a chunk are to be applied to the portion of the job running in
that chunk.

Chunk resources are requested inside a select statement.

Job-wide resource, server resource, queue resource
A job-wide resource, also called a server-level or queue-level resource, is a
resource that is available to the entire job at the server or queue.

A job-wide resource is available to be consumed or matched at the server or
queue if you set the server or queue resources_available.<resource

name> attribute to the available or matching value. For example, you can
define a custom resource called FloatingLicenses and set the server’s
resources_available.FloatingLicenses attribute to the number of avail-
able floating licenses.

Examples of job-wide resources are shared scratch space, licenses, or wall-
time.

A job can request a job-wide resource for the entire job, but not for individ-
ual chunks.
PBS Professional 12.1 User’s Guide 71

Chapter 5 Allocating Resources & Placing Jobs
5.3 Requesting Resources

Your job can request resources that apply to the entire job, or resources that apply to job
chunks. For example, if your entire job needs an application license, your job can request one
job-wide license. However, if one job process needs two CPUs and another needs 8 CPUs,
your job can request two chunks, one with two CPUs and one with eight CPUs. Your job can-
not request the same resource in a job-wide request and a chunk-level request.

PBS supplies resources such as walltime that can be used only as job-wide resources, and
other resources, such as ncpus and mem, that can be used only as chunk resources. A
resource is either job-wide or chunk-level, but not both. The description of each resource tells
you which way to use the resource; see “Resources” on page 297 of the PBS Professional Ref-
erence Guide.

We will cover the details of requesting resources in section 5.3.2, “Requesting Job-wide
Resources”, on page 73 and section 5.3.3, “Requesting Resources in Chunks”, on page 73.

5.3.1 Quick Summary of Requesting Resources

Job-wide resources are requested in <resource neme>=<value> pairs. You can request job-
wide resources using any of the following:

• The qsub -l <resource name>=<value> option

You can request multiple resources, using either format:

-l <resource>=<value>,<resource>=<value>

-l <resource>=<value> -l <resource>=<value>

• One or more #PBS -l <resource name>=<value> directives

Chunk resources are requested in chunk specifications in a select statement. You can request
chunk resources using any of the following:

• The qsub -l select=[N:][chunk specification][+[N:]chunk
specification] option

• A #PBS -l select=[N:][chunk specification][+[N:]chunk speci-
fication] directive

Format for requesting both job-wide and chunk resources:

qsub ... (non-resource portion of job)
-l <resource>=<value> (this is the job-wide request)
-l select=<chunk>[+<chunk>] (this is the selection statement)
72 PBS Professional 12.1 User’s Guide

Allocating Resources & Placing Jobs Chapter 5
PBS supplies several commands that you can use to request resources or alter resource
requests:

• The qsub command (both via command-line and in PBS directives)

• The pbs_rsub command (via command-line only)

• The qalter command (via command-line only)

5.3.2 Requesting Job-wide Resources

Your job can request resources that apply to the entire job in job-wide resource requests. A
job-wide resource is designed to be used by the entire job, and is available at the server or a
queue, but not at the host level. Job-wide resources are used for requesting floating licenses
or other resources not tied to specific vnodes, such as cput and walltime.

Job-wide resources are requested outside of a selection statement, in this form:

-l <resource name>=value[,<resource name>=value ...]

A resource request “outside of a selection statement” means that the resource request comes
after “-l”, but not after “-lselect=”. In other words, you cannot request a job-wide
resource in chunks.

For example, to request one hour of walltime for a job:

-l walltime=1:00:00

You can request job-wide resources using any of the following:

• The qsub -l <resource name>=<value> option

You can request multiple resources, using either format:

-l <resource>=<value>,<resource>=<value>

-l <resource>=<value> -l <resource>=<value>

• One or more #PBS -l <resource name>=<value> directives

5.3.3 Requesting Resources in Chunks

A chunk specifies the value of each resource in a set of resources which are to be allocated as
a unit to a job. It is the smallest set of resources to be allocated to a job. All of a chunk is
taken from a single host. One chunk may be broken across vnodes, but all participating
vnodes must be from the same host.
PBS Professional 12.1 User’s Guide 73

Chapter 5 Allocating Resources & Placing Jobs
Your job can request chunk resources, which are resources that apply to the host-level parts of
the job. Host-level resources can only be requested as part of a chunk. Server or queue
resources cannot be requested as part of a chunk. A chunk resource is used by the part of the
job running on that chunk, and is available at the host level. Chunks are used for requesting
host-related resources such as CPUs, memory, and architecture.

Chunk resources are requested inside a select statement. A select statement has this form:

-l select=[N:]chunk[+[N:]chunk ...]

Now, we’ll explain the details. A single chunk is requested using this form:

-l select=<resource name>=<value>[:<resource name>=<value>...]

For example, one chunk might have 2 CPUs and 4GB of memory:

-l select=ncpus=2:mem=4gb

To request multiples of a chunk, prefix the chunk specification by the number of chunks:

-l select=[number of chunks]<chunk specification>

For example, to request six of the previous chunk:

-l select=6:ncpus=2:mem=4gb

If you don’t specify N, the number of chunks, it is taken to be 1.

To request different chunks, concatenate the chunks using the plus sign (“+”):

-l select=[number of chunks]<chunk specification>+[number of chunks]<chunk
specification>

For example, to request two sets of chunks where one set of 6 chunks has 2 CPUs per chunk,
and one set of 3 chunks has 8 CPUs per chunk, and both sets have 4GB of memory per
chunk:

-l select=6:ncpus=2:mem=4gb+3:ncpus=8:mem=4GB

No spaces are allowed between chunks.

You must specify all your chunks in a single select statement.

You can request chunk resources using any of the following:

• The qsub -l select=[N:][chunk specification][+[N:]chunk
specification] option

• A #PBS -l select=[N:][chunk specification][+[N:]chunk speci-
fication] directive
74 PBS Professional 12.1 User’s Guide

Allocating Resources & Placing Jobs Chapter 5
5.3.4 Requesting Boolean Resources

A resource request can specify whether a Boolean resource should be True or False.

Example 5-1: Some vnodes have green=True and some have red=True, and you want to
request two vnodes, each with one CPU, all green and no red:

-l select=2:green=true:red=false:ncpus=1

Example 5-2: This job script snippet has a job-wide request for walltime and a chunk request
for CPUs and memory where the Boolean resource HasMyApp is True:

#PBS -l walltime=1:00:00

#PBS -l select=ncpus=4:mem=400mb:HasMyApp=true

Keep in mind the difference between requesting a vnode-level boolean and a job-wide bool-
ean:

qsub -l select=1:green=True

requests a vnode with green set to True. However,

qsub -l green=True

requests green set to True on the server and/or queue.

5.3.5 Requesting Application Licenses

Application licenses are managed as resources defined by your PBS administrator. PBS
doesn't actually check out the licenses; the application being run inside the job's session does
that.

5.3.5.1 Requesting Floating Application Licenses

A site-wide floating license is typically configured as a server-level, job-wide resource.

To request a job-wide application license called AppF, use:

qsub -l AppF=<number of licenses> <other qsub arguments>

If only certain hosts can run the application, they will typically have a host-level Boolean
resource set to True.
PBS Professional 12.1 User’s Guide 75

Chapter 5 Allocating Resources & Placing Jobs
The job-wide resource AppF is a numerical resource indicating the number of licenses avail-
able at the site. The host-level Boolean resource named haveAppF indicates whether a given
host can run the application. To request the application license and the vnodes on which to
run the application:

qsub -l AppF=<number of licenses> <other qsub arguments>

 -l select=haveAppF=True

PBS queries the license server to find out how many floating licenses are available at the
beginning of each scheduling cycle. PBS doesn't actually check out the licenses, the applica-
tion being run inside the job's session does that.

5.3.5.2 Requesting Node-locked Application Licenses

Node-locked application licenses are available at the vnode(s) that are licensed for the appli-
cation. These are host-level (chunk) resources that are requested inside of a select statement.

5.3.5.2.i Requesting Per-host Node-locked Application Licenses

Per-host node-locked application licenses are typically configured as a Boolean resource that
indicates whether or not the required license is available at that host.

When requesting Boolean-valued per-host node-locked licenses, request one per host. For-
mat:

qsub -l select=<Boolean resource name>=true:<rest of chunk specification>

Example 5-3: The Boolean resource named runsAppA specifies whether this vnode has the
necessary license. To request a host with a per-host node-locked license for AppA in one
chunk:

qsub -l select=1:runsAppA=1 <job script>

5.3.5.2.ii Requesting Per-use Node-locked Application Licenses

Per-use node-locked application licenses are typically configured as a consumable numeric
resource so that the host(s) that run the application have the number of licenses that can be
used at one time.
76 PBS Professional 12.1 User’s Guide

Allocating Resources & Placing Jobs Chapter 5
When requesting numerical per-use node-locked licenses, request the required number of
licenses for each host:

qsub -l select=<consumable resource name>=<required amount>:<rest of chunk
specification>

Example 5-4: The consumable resource named AppB indicates the number of available per-
use application licenses on a host. To request a host with a per-use node-locked license
for AppB, where you’ll run one instance of AppB on two CPUs in one chunk:

qsub -l select=1:ncpus=2:AppB=1

5.3.5.2.iii Requesting Per-CPU Node-locked Application Licenses

Per-CPU node-locked licenses are typically arranged so that the host has one license for each
licensed CPU. The PBS administrator configures a consumable numerical resource indicating
the number of available licenses.

You must request one license for each CPU. When requesting numerical per-use node-locked
licenses, request the required number of licenses for each host:

qsub -l select=<per-CPU resource name>=<required amount>:<rest of chunk
specification>

Example 5-5: The numerical consumable resource named AppC indicates the number of
available per-CPU licenses. To request a host with two per-CPU node-locked licenses for
AppC, where you’ll run a job using two CPUs in one chunk:

qsub -l select=1:ncpus=2:AppC=2

5.3.6 Requesting Scratch Space

Scratch space on a machine is configured as a host-level dynamic resource. Ask your admin-
istrator for the name of the scratch space resource.

When requesting scratch space, include the resource in your chunk request:

-l select=<scratch resource name>=<amount of scratch needed>:<rest of chunk
specification>

Example 5-6: Your administrator has named the scratch resource “dynscratch”. To request
10MB of scratch space in one chunk:

-l select=1:ncpus=N:dynscratch=10MB
PBS Professional 12.1 User’s Guide 77

Chapter 5 Allocating Resources & Placing Jobs
5.3.7 Requesting GPUs

Your PBS job can request GPUs. Your administrator can configure PBS to support any of the
following:

• Job uses non-specific GPUs and exclusive use of a node

• Job uses non-specific GPUs and shared use of a node

• Job uses specific GPUs and either shared or exclusive use of a node

5.3.7.1 Binding to GPUs

PBS Professional allocates GPUs, but does not bind jobs to any particular GPU; the applica-
tion itself, or the CUDA library, is responsible for the actual binding.

5.3.7.2 Requesting Non-specific GPUs and Exclusive Use of
Node

If your job needs GPUs, but does not require specific GPUs, and can request exclusive use of
GPU nodes, you can request GPUs the same way you request CPUs.

Your administrator can set up a resource to represent the GPUs on a node. We recommend
that the GPU resource is called ngpus.

When requesting GPUs in this manner, your job should request exclusive use of the node to
prevent other jobs being scheduled on its GPUs.

qsub -l select=ngpus=<value>:<rest of chunk specification> -lplace=excl

Example 5-7: To submit the job named “my_gpu_job”, requesting one node with two GPUs
and one CPU, and exclusive use of the node:

qsub -lselect=1:ncpus=1:ngpus=2 -lplace=excl my_gpu_job

It is up to the application or CUDA to bind the GPUs to the application processes.

5.3.7.3 Requesting Non-specific GPUs and Shared Use of Node

Your administrator can configure PBS to allow your job to use non-specific GPUs on a node
while sharing GPU nodes. In this case, your administrator puts each GPU in its own vnode.

Your administrator can configure a resource to represent GPUs. We recommend that the GPU
resource is called ngpus.
78 PBS Professional 12.1 User’s Guide

Allocating Resources & Placing Jobs Chapter 5
Your administrator can configure each GPU vnode so it has a resource containing the device
number of the GPU. We recommend that this resource is called gpu_id.

Example 5-8: To submit the job named “my_gpu_job”, requesting two GPUs and one CPU,
and shared use of the node:

qsub -lselect=1:ncpus=1:ngpus=2 -lplace=shared my_gpu_job

When a job is submitted requesting any GPU, the PBS scheduler looks for a vnode with an
available GPU and assigns that vnode to the job. Since there is a one-to-one correspondence
between GPUs and vnodes, the job can determine the gpu_id of that vnode. Finally, the
application can use the appropriate CUDA call to bind the process to the allocated GPU.

5.3.7.4 Requesting Specific GPUs

Your job can request one or more particular GPUs. This allows you to run applications on the
GPUs for which the applications are written.

Your administrator can set up a resource to allow jobs to request specific GPUs. We recom-
mend that the GPU resource is called gpu_id.

When you request specific GPUs, specify the GPU that you want for each chunk:

qsub -l select=gpu_id=<GPU ID>:<rest of chunk specification>

Example 5-9: To request 4 vnodes, each with GPU with ID 0:

qsub -lselect=4:ncpus=1:gpu_id=gpu0 my_gpu_job

When a job is submitted requesting specific GPUs, the PBS scheduler assigns the vnode with
the resource containing that gpu_id to the job. The application can use the appropriate
CUDA call to bind the process to the allocated GPU.

5.3.7.5 Viewing GPU Information for Nodes

You can find the number of GPUs available and assigned on execution hosts via the pbsn-
odes command. See section 5.6, “Viewing Resources”, on page 88.

5.3.8 Caveats and Restrictions on Requesting Resources

5.3.8.1 Caveats and Restrictions for Specifying Resource Values

• Resource values which contain commas, quotes, plus signs, equal signs, colons, or paren-
theses must be quoted to PBS. The string must be enclosed in quotes so that the com-
mand (e.g. qsub, qalter) will parse it correctly.

• When specifying resources via the command line, any quoted strings must be escaped or
PBS Professional 12.1 User’s Guide 79

Chapter 5 Allocating Resources & Placing Jobs
enclosed in another set of quotes. This second set of quotes must be different from the
first set, meaning that double quotes must be enclosed in single quotes, and vice versa.

• If a string resource value contains spaces or shell metacharacters, enclose the string in
quotes, or otherwise escape the space and metacharacters. Be sure to use the correct
quotes for your shell and the behavior you want.

5.3.8.2 Warning About NOT Requesting walltime

If your job does not request a walltime, and there is no default for walltime, your job is treated
as if it had requested a very, very long walltime. Translation: the scheduler will have a hard
time finding a time slot for your job. Remember, the administrator may schedule dedicated
time for the entire PBS complex once a year, for upgrading, etc. In this case, your job will
never run. We recommend requesting a reasonable walltime for your job.

5.3.8.3 Caveats for Jobs Requesting Undefined Resources

If you submit a job that requests a job-wide or host-level resource that is undefined, the job is
not rejected at submission; instead, it is aborted upon being enqueued in an execution queue,
if the resources are still undefined. This preserves backward compatibility.

5.3.8.4 Matching Resource Requests with Unset Resources

When job resource requests are being matched with available resources, a numerical resource
that is unset on a host is treated as if it were zero, and an unset string cannot satisfy a request.
An unset Boolean resource is treated as if it were set to “False”. An unset resource at the
server or queue is treated as if it were infinite.

5.3.8.5 Caveat for Invisible or Unrequestable Resources

Your administrator may define custom resources which restricted, so that they are invisible, or
are visible but unrequestable. Custom resources which were created to be invisible or unre-
questable cannot be requested or altered. The following is a list of the commands normally
used to view or request resources or modify resource requests, and their limitations for
restricted resources:

pbsnodes

Job submitters cannot view restricted host-level custom resources.

pbs_rstat

Job submitters cannot view restricted reservation resources.

pbs_rsub
80 PBS Professional 12.1 User’s Guide

Allocating Resources & Placing Jobs Chapter 5
Job submitters cannot request restricted custom resources for reservations.

qalter

Job submitters cannot alter a restricted resource.

qmgr

Job submitters cannot print or list a restricted resource.

qselect

Job submitters cannot specify restricted resources via -l
Resource_List.

qsub

Job submitters cannot request a restricted resource.

qstat

Job submitters cannot view a restricted resource.

5.3.8.6 Warning About Requesting Tiny Amounts of Memory

The smallest unit of memory you can request is 1KB. If you request 400 bytes, you get 1KB.
If you request 1400 bytes, you get 2KB.

5.3.8.7 Maximum Length of Job Submission Command Line

The maximum length of a command line in PBS is 4095 characters. When you submit a job
using the command line, your select and place statements, and the rest of your command line,
must fit within 4095 characters.

5.3.8.8 Only One select Statement Per Job

You can include at most one select statement per job submission.

5.3.8.9 The software Resource is Job-wide

The built-in resource "software" is not a vnode-level resource. See “Built-in Resources” on
page 299 of the PBS Professional Reference Guide.

5.3.8.10 Do Not Mix Old and New Syntax

Do not mix old and new syntax when requesting resources. See section 5.8, “Backward Com-
patibility”, on page 98 for a description of old syntax.
PBS Professional 12.1 User’s Guide 81

Chapter 5 Allocating Resources & Placing Jobs
5.4 How Resources are Allocated to Jobs

Resources are allocated to your job when the job explicitly requests them, and when PBS
applies defaults.

Jobs explicitly request resources either at the vnode level in chunks defined in a selection
statement, or in job-wide resource requests. We will cover requesting resources in section
5.3.3, “Requesting Resources in Chunks”, on page 73 and section 5.3.2, “Requesting Job-
wide Resources”, on page 73.

The administrator can set default resources at the server and at queues, so that a job that does
not request a resource at submission time ends up being allocated the default value for that
resource. We will cover default resources in section 5.4.1, “Applying Default Resources”, on
page 82.

The administrator can also specify default arguments for qsub so that jobs automatically
request certain resources. Resource values explicitly requested by your job override any
qsub defaults. See “qsub” on page 210 of the PBS Professional Reference Guide.

5.4.1 Applying Default Resources

PBS applies resource defaults only where the job has not explicitly requested a value for a
resource.

Job-wide and per-chunk resources are applied, with the following order of precedence, via the
following:

1. Resources that are explicitly requested via -l <resource>=<value> and -l
select=<chunk>

2. Default qsub arguments

3. The queue’s default_chunk.<resource>

4. The server’s default_chunk.<resource>

5. The queue’s resources_default.<resource>

6. The server’s resources_default.<resource>

7. The queue’s resources_max.<resource>

8. The server’s resources_max.<resource>
82 PBS Professional 12.1 User’s Guide

Allocating Resources & Placing Jobs Chapter 5
5.4.1.1 Applying Job-wide Default Resources

The explicit job-wide resource request is checked first against default qsub arguments, then
against queue resource defaults, then against server resource defaults. Any default job-wide
resources not already in the job’s resource request are added. PBS applies job-wide default
resources defined in the following places, in this order:

• Via qsub: The server’s default_qsub_arguments attribute can include any requestable
job-wide resources.

• Via the queue: Each queue’s resources_default attribute defines each queue-level job-
wide resource default in resources_default.<resource>.

• Via the server: The server’s resources_default attribute defines each server-level job-
wide resource default in resources_default.<resource>.

5.4.1.2 Applying Per-chunk Default Resources

For each chunk in the job's selection statement, first qsub defaults are applied, then queue
chunk defaults are applied, then server chunk defaults are applied. If the chunk request does
not include a resource listed in the defaults, the default is added. PBS applies default chunk
resources in the following order:

• Via qsub: The server’s default_qsub_arguments attribute can include any requestable
chunk resources.

• Via the queue: Each queue’s default_chunk attribute defines each queue-level chunk
resource default in default_chunk.<resource>.

• Via the server: The server’s default_chunk attribute defines each server-level chunk
resource default in default_chunk.<resource>.

Example 5-10: Applying chunk defaults: if the queue in which the job is enqueued has the
following defaults defined:

default_chunk.ncpus=1

default_chunk.mem=2gb

A job submitted with this selection statement:

select=2:ncpus=4+1:mem=9gb

The job has this specification after the default_chunk elements are applied:

select=2:ncpus=4:mem=2gb+1:ncpus=1:mem=9gb.

In this example, mem=2gb and ncpus=1 are inherited from default_chunk.
PBS Professional 12.1 User’s Guide 83

Chapter 5 Allocating Resources & Placing Jobs
5.4.1.3 Caveat for Moving Jobs From One Queue to Another

If the job is moved from the current queue to a new queue, any default resources in the job's
resource list that were contributed by the current queue are removed. This includes a select
specification and place directive generated by the rules for conversion from the old syntax. If
a job's resource is unset (undefined) and there exists a default value at the new queue or
server, that default value is applied to the job's resource list. If either select or place is missing
from the job's new resource list, it will be automatically generated, using any newly inherited
default values.

Given the following set of queue and server default values:

Server

resources_default.ncpus=1

Queue QA

resources_default.ncpus=2

default_chunk.mem=2gb

Queue QB

default_chunk.mem=1gb

no default for ncpus

The following examples illustrate the equivalent select specification for jobs submitted into
queue QA and then moved to (or submitted directly to) queue QB:

qsub -l ncpus=1 -lmem=4gb

In QA: select=1:ncpus=1:mem=4gb

No defaults need be applied

In QB: select=1:ncpus=1:mem=4gb

No defaults need be applied

qsub -l ncpus=1

In QA: select=1:ncpus=1:mem=2gb

Picks up 2gb from queue default chunk and 1 ncpus from qsub

In QB: select=1:ncpus=1:mem=1gb

Picks up 1gb from queue default chunk and 1 ncpus from qsub

qsub -lmem=4gb

In QA: select=1:ncpus=2:mem=4gb

Picks up 2 ncpus from queue level job-wide resource default and 4gb
mem from qsub
84 PBS Professional 12.1 User’s Guide

Allocating Resources & Placing Jobs Chapter 5
In QB: select=1:ncpus=1:mem=4gb

Picks up 1 ncpus from server level job-wide default and 4gb mem from
qsub

qsub -lnodes=4

In QA: select=4:ncpus=1:mem=2gb

Picks up a queue level default memory chunk of 2gb. (This is not
4:ncpus=2 because in prior versions, "nodes=x" implied 1 CPU per
node unless otherwise explicitly stated.)

In QB: select=4:ncpus=1:mem=1gb

(In prior versions, "nodes=x" implied 1 CPU per node unless otherwise
explicitly stated, so the ncpus=1 is not inherited from the server
default.)

qsub -l mem=16gb -lnodes=4

In QA: select=4:ncpus=1:mem=4gb

(This is not 4:ncpus=2 because in prior versions, "nodes=x" implied 1
CPU per node unless otherwise explicitly stated.)

In QB: select=4:ncpus=1:mem=4gb

(In prior versions, "nodes=x" implied 1 CPU per node unless otherwise
explicitly stated, so the ncpus=1 is not inherited from the server
default.)

5.5 Limits on Resource Usage

Jobs are assigned limits on the amount of resources they can use. These limits apply to how
much the whole job can use (job-wide limit) and to how much the job can use at each host
(host limit). Limits are applied only to resources the job requests or inherits.

Your administrator can configure PBS to enforce limits on mem and ncpus, but the other
limits are always enforced.

If you want to make sure that your job does not exceed a given amount of some resource,
request that amount of the resource.
PBS Professional 12.1 User’s Guide 85

Chapter 5 Allocating Resources & Placing Jobs
5.5.1 Enforceable Resource Limits

Limits can be enforced on the following resources:

5.5.2 Origins of Resource Limits

Limits are derived from both requested resources and applied default resources. Resource
limits are derived in the order shown in section 5.4.1, “Applying Default Resources”, on page
82.

5.5.3 Job-wide Resource Limits

Job-wide resource limits set a limit for per-job resource usage. Job resource limits are derived
from job-wide resources and from totals of per-chunk consumable resources. Limits are
derived from explicitly requested resources and default resources.

Table 5-1: Enforceable Resource Limits

Resource Name Where Specified
Where

Enforced
Always

Enforced?

cput Host Host Always

mem Host Host Optional

ncpus Host Host Optional

pcput Job-wide Per-process Always

pmem Job-wide Per-process Always

pvmem Job-wide Per-process Always

vmem Host Host Always

walltime Job-wide Job-wide Always
86 PBS Professional 12.1 User’s Guide

Allocating Resources & Placing Jobs Chapter 5
Job-wide resource limits that are derived from from sums of all chunks override those that are
derived from job-wide resources.

Example 5-11: Job-wide limits are derived from sums of chunks. With the following chunk
request:

qsub -lselect=2:ncpus=3:mem=4gb:arch=linux

The following job-wide limits are derived:

ncpus=6

mem=8gb

5.5.4 Per-chunk Resource Limits

Each chunk's per-chunk limits determine how much of any resource can be used at that host.
PBS sums the chunk limits at each host, and uses that sum as the limit at that resource. Per-
chunk resource usage limits are the amount of per-chunk resources allocated to the job, both
from explicit requests and from defaults.

5.5.4.1 Effects of Limits

If a running job exceeds its limit for walltime, the job is terminated.

If any of the job’s processes exceed the limit for pcput, pmem, or pvmem, the job is termi-
nated.

If any of the host limits for mem, ncpus, cput, or vmem is exceeded, the job is terminated.
These are host-level limits, so if for example your job has two chunks on one host, and the
processes on one chunk exceed one of these limits, but the processes on the other are under
the chunk limit, the job can continue to run as long as the total used for both chunks is less
than the host limit.

5.5.5 Examples of Memory Limits

Your administrator may choose to enforce memory limits. If this is the case, the memory used
by the entire job cannot exceed the amount in Resource_List.mem, and the memory used at
any host cannot exceed the sum of the chunks on that host. For the following examples,
assume the following:
PBS Professional 12.1 User’s Guide 87

Chapter 5 Allocating Resources & Placing Jobs
The queue has these settings:

resources_default.mem=200mb

default_chunk.mem=100mb

Example 5-12: A job requesting -l select=2:ncpus=1:mem=345mb uses 345mb
from each of two vnodes and has a job-wide limit of 690mb (2 * 345). The job's
Resource_List.mem shows 690mb.

Example 5-13: A job requesting -l select=2:ncpus=2 takes 100mb via

default_chunk from each vnode and has a job-wide limit of 200mb (2 * 100mb). The
job's Resource_List.mem shows 200mb.

Example 5-14: A job requesting -l ncpus=2 takes 200mb (inherited from
resources_default and used to create the select specification) from one vnode and has a
job-wide limit of 200mb. The job's Resource_List.mem shows 200mb.

Example 5-15: A job requesting -lnodes=2 inherits 200mb from
resources_default.mem which becomes the job-wide limit. The memory is taken
from the two vnodes, half (100mb) from each. The generated select specification is
2:ncpus=1:mem=100mb. The job's Resource_List.mem shows 200mb.

5.6 Viewing Resources

You can look at the resources on the server, queue, and vnodes. You can also see what
resources are allocated to and used by your job.

5.6.1 Viewing Server, Queue, and Vnode Resources

To see server resources:

qstat - Bf

To see queue resources:

qstat -Qf

To see vnode resources, use any of the following:

qmgr -c ‘list node <vnode name> <attribute name>

pbsnodes -av

pbsnodes [host list]

Look at the following attributes:
88 PBS Professional 12.1 User’s Guide

Allocating Resources & Placing Jobs Chapter 5
resources_available.<resource name>
(Server, queue, vnode) Total amount of the resource available at the server,
queue, or vnode; does not take into account how much of the resource is in
use.

resources_default.<resource name>
(Server, queue) Default value for job-wide resource. This amount is allo-
cated to job if job does not request this resource. Queue setting overrides
server setting.

resources_max.<resource name>
(Server, queue) Maximum amount that a single job can request. Queue set-
ting overrides server setting.

resources_min.<resource name>
(Queue) Minimum amount that a single job can request.

resources_assigned.<resource name>
(Server, queue, vnode) Total amount of the resource that has been allocated
to running jobs and reservations at the server, queue, or vnode.

5.6.2 Viewing Job Resources

To see the resources allocated to or used by your job:

qstat -f

Look at the following job attributes:

Resource_List.<resource name>
The amount of the resource that has been allocated to the job, including
defaults.

resources_used.<resource name>
The amount of the resource used by the job.

5.6.2.1 Resources Shown in Job’s Resource_List Attribute

When your job requests a job-wide resource or any of certain built-in host-level resources, the
value requested is stored in the job’s Resource_List attribute, as Resource_List.<resource

name>=<value>. When you request a built-in host-level resource inside multiple chunks,
the value in Resource_List is the sum over all of the chunks for that resource. For a list of
the resources that can appear in Resource_List, see section 5.9.2, "Resources Requested by
Job", on page 305 of the PBS Professional Administrator’s Guide.

If your administrator has defined default values for any of those resources, and your job has
inherited any defaults, those defaults control the value shown in the Resource_List attribute.
PBS Professional 12.1 User’s Guide 89

Chapter 5 Allocating Resources & Placing Jobs
5.7 Specifying Job Placement

You can specify how your job should be placed on vnodes. You can choose to place each
chunk on a different host, or a different vnode, or your job can use chunks that are all on one
host. You can specify that all of the job’s chunks should share a value for some resource.

Your job can request exclusive use of each vnode, or shared use with other jobs. Your job can
request exclusive use of its hosts.

We will cover the basics of specifying job placement in the following sections. For details on
placing chunks for an MPI job, see "Submitting Multiprocessor Jobs".

5.7.1 Using the place Statement

You use the place statement to specify how the job’s chunks are placed.

The place statement has this form:

-l place=[arrangement][: sharing][: grouping]

where

arrangement is one of free | pack | scatter | vscatter

sharing is one of excl | shared | exclhost

grouping can have only one instance of group=<resource>

and where

Table 5-2: Placement Modifiers

Modifier Meaning

free Place job on any vnode(s)

pack All chunks will be taken from one host

scatter Only one chunk is taken from any host

vscatter Only one chunk is taken from any vnode.

Each chunk must fit on a vnode.

excl Only this job uses the vnodes chosen

exclhost The entire host is allocated to this job
90 PBS Professional 12.1 User’s Guide

Allocating Resources & Placing Jobs Chapter 5
The place statement may be not be used without the select statement.

5.7.1.1 Specifying Arrangement of Chunks

To place your job’s chunks wherever they fit:

-l place=free

To place all of the job’s chunks on a single host:

-l place=pack

To place each chunk on its own host:

-l place=scatter

To place each chunk on its own vnode:

-l place=vscatter

5.7.1.1.i Caveats and Restrictions for Arrangement

• For all arrangements except vscatter, chunks cannot be split across hosts, but they can be
split across vnodes on the same host. If a job does not request vscatter for its arrange-
ment, any chunk can be broken across vnodes. This means that one chunk could be taken
from more than one vnode.

• If the job requests vscatter for its arrangement, no chunk can be larger than a vnode, and
no chunk can be split across vnodes. This behavior is different from other values for
arrangement, where chunks can be split across vnodes.

5.7.1.2 Specifying Shared or Exclusive Use of Vnodes

Each vnode can be allocated exclusively to one job, or its resources can be shared among jobs.
Hosts can also be allocated exclusively to one job, or shared among jobs.

shared This job can share the vnodes chosen

group=<resource> Chunks will be placed on vnodes according to a resource shared
by those vnodes. This resource must be a string or string array.
All vnodes in the group must have a common value for the
resource.

Table 5-2: Placement Modifiers

Modifier Meaning
PBS Professional 12.1 User’s Guide 91

Chapter 5 Allocating Resources & Placing Jobs
How vnodes are allocated to jobs is determined by a combination of the vnode’s sharing
attribute and the job’s resource request. The possible values for the vnode sharing attribute,
and how they interact with a job’s placement request, are described in “sharing” on page 370
of the PBS Professional Reference Guide. The following table expands on this:

If a vnode is allocated exclusively to a job, all of its resources are assigned to the job. The
state of the vnode becomes job-exclusive. No other job can use the vnode.

If a host is to be allocated exclusively to one job, all of the host must be used: if any vnode
from a host has its sharing attribute set to either default_exclhost or force_exclhost, all
vnodes on that host must have the same value for the sharing attribute.

To see the value for a vnode’s sharing attribute, you can do either of the following:

• Use qmgr:
Qmgr: list node <vnode name> sharing

• Use pbsnodes:
pbsnodes -av

Table 5-3: How Vnode sharing Attribute Affects Vnode Allocation

Value of Vnode
sharing Attribute

Effect on Allocation

not set The job’s arrangement request determines how vnodes are allo-
cated to the job. If there is no specification, vnodes are shared.

default_share Vnodes are shared unless the job explicitly requests exclusive
use of the vnodes.

default_excl Vnodes are allocated exclusively to the job unless the job
explicitly requests shared allocation.

default_exclhost All vnodes from this host are allocated exclusively to the job,
unless the job explicitly requests shared allocation.

ignore_excl Vnodes are shared, regardless of the job’s request.

force_excl Vnodes are allocated exclusively to the job, regardless of the
job’s request.

force_exclhost All vnodes from this host are allocated exclusively to the job,
regardless of the job’s request.
92 PBS Professional 12.1 User’s Guide

Allocating Resources & Placing Jobs Chapter 5
5.7.1.3 Grouping on a Resource

You can specify that all of the chunks for your job should run on vnodes that have the same
value for a selected resource.

To group your job’s chunks this way, use the following format:

-l place=group=<resource>

where resource is a string or string array.

The value of the resource can be one or more strings at each vnode, but there must be one
string that is the same for each vnode. For example, if the resource is router, the value can be
“r1i0,r1” at one vnode, and “r1i1,r1” at another vnode, and these vnodes can be grouped
because they share the string "r1".

Using the method of grouping on a resource, you cannot specify what the value of the
resource should be, only that all vnodes have the same value. If you need the resource to have
a specific value, specify that value in the description of the chunks.

5.7.1.3.i Grouping vs. Placement Sets

Your administrator may define placement sets for your site. A placement set is a group of
vnodes that share a value for a resource. By default, placement sets attempt to group vnodes
that are “close to” each other. If your job doesn’t request a specific placement, and placement
sets are defined, your job may automatically run in a placement set. See section 4.8.32,
"Placement Sets" on page 210 in the PBS Professional Administrator’s Guide.

If your job requests grouping by a resource, using place=group=resource, the chunks are
placed as requested and placement sets are ignored.

If your job requests grouping but no group contains the required number of vnodes, grouping
is ignored.

5.7.2 How the Job Gets its Place Statement

If the administrator has defined default values for arrangement, sharing, and grouping, each
job inherits these unless it explicitly requests at least one. That means that if your job requests
arrangement, but not sharing or grouping, it will not inherit values for sharing or grouping.
For example, the administrator sets a default of place=pack:exclhost:group=host.
Job A requests place=free, but doesn’t specify sharing or grouping, so Job A does not
inherit sharing or grouping. Job B does not request any placement, so it inherits all three.
PBS Professional 12.1 User’s Guide 93

Chapter 5 Allocating Resources & Placing Jobs
The place statement can be specified, in order of precedence, via:

1. Explicit placement request in qalter

2. Explicit placement request in qsub

3. Explicit placement request in PBS job script directives

4. Default qsub place statement

5. Queue default placement rules

6. Server default placement rules

7. Built-in default conversion and placement rules

5.7.3 Caveats and Restrictions for Specifying Placement

• The place specification cannot be used without the select specification. In other words,
you can only specify placement when you have specified chunks.

• A select specification cannot be used with a nodes specification.

• A select specification cannot be used with old-style resource requests such as -lncpus,
-lmem, -lvmem, -larch, -lhost.

• When using place=group=<resource>, the resource must be a string or string array.

• Do not mix old and new syntax when requesting placement. See section 5.8, “Backward
Compatibility”, on page 98 for a description of old syntax.
94 PBS Professional 12.1 User’s Guide

Allocating Resources & Placing Jobs Chapter 5
5.7.4 Examples of Specifying Placement

Unless otherwise specified, the vnodes allocated to the job will be allocated as shared or
exclusive based on the setting of the vnode’s sharing attribute. Each of the following shows
how you would use -l select= and -l place=.

1. A job that will fit in a single host such as an Altix but not in any of the vnodes,
packed into the fewest vnodes:

-l select=1:ncpus=10:mem=20gb

-l place=pack

In earlier versions, this would have been:

-lncpus=10,mem=20gb

2. Request four chunks, each with 1 CPU and 4GB of memory taken from anywhere.

-l select=4:ncpus=1:mem=4GB

-l place=free

3. Allocate 4 chunks, each with 1 CPU and 2GB of memory from between

 one and four vnodes which have an arch of “linux”.

-l select=4:ncpus=1:mem=2GB:arch=linux -l place=free

4. Allocate four chunks on 1 to 4 vnodes where each vnode must have 1 CPU, 3GB of
memory and 1 node-locked dyna license available for each chunk.

-l select=4:dyna=1:ncpus=1:mem=3GB -l place=free

5. Allocate four chunks on 1 to 4 vnodes, and 4 floating dyna licenses. This assumes
“dyna” is specified as a server dynamic resource.

-l dyna=4 -l select=4:ncpus=1:mem=3GB -l place=free

6. This selects exactly 4 vnodes where the arch is linux, and each vnode will be on a
separate host. Each vnode will have 1 CPU and 2GB of memory allocated to the
job.

-lselect=4:mem=2GB:ncpus=1:arch=linux -lplace=scatter

7. This will allocate 3 chunks, each with 1 CPU and 10GB of memory. This will also
reserve 100mb of scratch space if scratch is to be accounted . Scratch is assumed to
PBS Professional 12.1 User’s Guide 95

Chapter 5 Allocating Resources & Placing Jobs
be on a file system common to all hosts. The value of “place” depends on the default
which is “place=free”.

-l scratch=100mb -l select=3:ncpus=1:mem=10GB

8. This will allocate 2 CPUs and 50GB of memory on a host named zooland. The value
of “place” depends on the default which defaults to “place=free”:

-l select=1:ncpus=2:mem=50gb:host=zooland

9. This will allocate 1 CPU and 6GB of memory and one host-locked swlicense from
each of two hosts:

-l select=2:ncpus=1:mem=6gb:swlicense=1

-lplace=scatter

10. Request free placement of 10 CPUs across hosts:

-l select=10:ncpus=1

-l place=free

11. Here is an odd-sized job that will fit on a single Altix, but not on any one node-board.
We request an odd number of CPUs that are not shared, so they must be “rounded
up”:

-l select=1:ncpus=3:mem=6gb

-l place=pack:excl

12. Here is an odd-sized job that will fit on a single Altix, but not on any one node-board.
We are asking for small number of CPUs but a large amount of memory:

-l select=1:ncpus=1:mem=25gb

-l place=pack:excl

13. Here is a job that may be run across multiple Altix systems, packed into the fewest
vnodes:

-l select=2:ncpus=10:mem=12gb

-l place=free

14. Submit a job that must be run across multiple Altix systems, packed into the fewest
vnodes:

-l select=2:ncpus=10:mem=12gb

-l place=scatter

15. Request free placement across nodeboards within a single host:

-l select=1:ncpus=10:mem=10gb
96 PBS Professional 12.1 User’s Guide

Allocating Resources & Placing Jobs Chapter 5
-l place=group=host

16. Request free placement across vnodes on multiple Altixes:

-l select=10:ncpus=1:mem=1gb

-l place=free

17. Here is a small job that uses a shared cpuset:

-l select=1:ncpus=1:mem=512kb

-l place=pack:shared

18. Request a special resource available on a limited set of nodeboards, such as a graph-
ics card:

-l select= 1:ncpus=2:mem=2gb:graphics=True +
1:ncpus=20:mem=20gb:graphics=False

-l place=pack:excl

19. Align SMP jobs on c-brick boundaries:

-l select=1:ncpus=4:mem=6gb

-l place=pack:group=cbrick

20. Align a large job within one router, if it fits within a router:

-l select=1:ncpus=100:mem=200gb

-l place=pack:group=router

21. Fit large jobs that do not fit within a single router into as few available routers as pos-
sible. Here, RES is the resource used for node grouping:

-l select=1:ncpus=300:mem=300gb

-l place=pack:group=<RES>

22. To submit an MPI job, specify one chunk per MPI task. For a 10-way MPI job with
2gb of memory per MPI task:

-l select=10:ncpus=1:mem=2gb

23. To submit a non-MPI job (including a 1-CPU job or an OpenMP or shared memory)
job, use a single chunk. For a 2-CPU job requiring 10gb of memory:

-l select=1:ncpus=2:mem=10gb
PBS Professional 12.1 User’s Guide 97

Chapter 5 Allocating Resources & Placing Jobs
5.8 Backward Compatibility

5.8.1 Old-style Resource Specifications

Old versions of PBS allowed job submitters to ask for resources outside of a select statement,
using “-lresource=value”, where those resources must now be requested in chunks,
inside a select statement. This old style of resource request was called a “resource specifica-
tion”. Resource specification syntax is deprecated.

For backward compatibility, any resource specification is converted to select and place state-
ments, and any defaults are applied.

5.8.2 Old-style Node Specifications

In early versions of PBS, job submitters used “-l nodes=...” in what was called a “node
specification” to specify where the job should run. The syntax for a “node specification” is
deprecated.

For backward compatibility, a legal node specification or resource specification is converted
into select and place directives; we show how in following sections.

5.8.3 Conversion of Old Style to New

5.8.3.1 Conversion of Resource Specifications

If your job has an old-style resource specification, PBS creates a select specification request-
ing 1 chunk containing the resources specified by the job and server and/or queue default
resources. Resource specification format:

-lresource=value[:resource=value ...]

The resource specification is converted to:

-lselect=1[:resource=value ...]

-lplace=pack

with one instance of resource=value for each of the following vnode-level resources in the
resource request:

built-in resources: ncpus | mem | vmem | arch | host

site-defined vnode-level resources
98 PBS Professional 12.1 User’s Guide

Allocating Resources & Placing Jobs Chapter 5
For example, a job submitted with

qsub -l ncpus=4:mem=123mb:arch=linux

gets the following select statement:

select=1:ncpus=4:mem=123mb:arch=linux

5.8.3.2 Conversion of Node Specifications

If your job requests a node specification, PBS creates a select and place specification, accord-
ing to the following rules.

Old node specification format:

-lnodes=[N:spec_list | spec_list]

[[+N:spec_list | +spec_list] ...]

[#suffix ...][-lncpus=Z]

where:

spec_list has syntax: spec[:spec ...]

spec is any of: hostname | property | ncpus=X | cpp=X | ppn=P

suffix is any of: property | excl | shared

N and P are positive integers

X and Z are non-negative integers

The node specification is converted into select and place statements as follows:

Each spec_list is converted into one chunk, so that N:spec_list is converted into N chunks.

If spec is hostname :

The chunk will include host=hostname

If spec matches any vnode's resources_available.host value:

The chunk will include host=hostname

If spec is property :

The chunk will include property=true

Property must be a site-defined vnode-level boolean resource.

If spec is ncpus=X or cpp=X :

The chunk will include ncpus=X
PBS Professional 12.1 User’s Guide 99

Chapter 5 Allocating Resources & Placing Jobs
If no spec is ncpus=X and no spec is cpp=X :

The chunk will include ncpus=P

If spec is ppn=P :

The chunk will include mpiprocs=P

If the nodespec is

-lnodes=N:ppn=P

It is converted to

-lselect=N:ncpus=P:mpiprocs=P

Example:

-lnodes=4:ppn=2

is converted into

-lselect=4:ncpus=2:mpiprocs=2

If -lncpus=Z is specified and no spec contains ncpus=X and no spec is cpp=X :

Every chunk will include ncpus=W, where W is Z divided by the total number of chunks.
(Note: W must be an integer; Z must be evenly divisible by the number of chunks.)

If property is a suffix :

All chunks will include property=true

If excl is a suffix :

The placement directive will be -lplace=scatter:excl

If shared is a suffix :

The placement directive will be -lplace=scatter:shared

If neither excl nor shared is a suffix :

The placement directive will be -lplace=scatter

Example:

-lnodes=3:green:ncpus=2:ppn=2+2:red

is converted to:

-l select=3:green=true:ncpus=4:mpiprocs=2+ 2:red=true:ncpus=1

-l place=scatter
100 PBS Professional 12.1 User’s Guide

Allocating Resources & Placing Jobs Chapter 5
5.8.3.3 Examples of Converting Old Syntax to New

1. Request CPUs and memory on a single host using old syntax:
-l ncpus=5,mem=10gb

is converted into the equivalent:

-l select=1:ncpus=5:mem=10gb

-l place=pack

2. Request CPUs and memory on a named host along with custom resources including a
floating license using old syntax:

-l ncpus=1,mem=5mb,host=sunny,opti=1,arch=solaris

is converted to the equivalent:

-l select=1:ncpus=1:mem=5gb:host=sunny:arch=solaris

-l place=pack

-l opti=1

3. Request one host with a certain property using old syntax:

-lnodes=1:property

is converted to the equivalent:

-l select=1:ncpus=1:property=True

-l place=scatter

4. Request 2 CPUs on each of four hosts with a given property using old syntax:

-lnodes=4:property:ncpus=2

is converted to the equivalent:

-l select=4: ncpus=2:property=True
PBS Professional 12.1 User’s Guide 101

Chapter 5 Allocating Resources & Placing Jobs
-l place=scatter

5. Request 1 CPU on each of 14 hosts asking for certain software, licenses and a job
limit amount of memory using old syntax:

-lnodes=14:mpi-fluent:ncpus=1 -lfluent=1,fluent-all=1, fluent-par=13

-l mem=280mb

is converted to the equivalent:

-l select=14:ncpus=1:mem=20mb:mpi_fluent=True

-l place=scatter

-l fluent=1,fluent-all=1,fluent-par=13

6. Requesting licenses using old syntax:

-lnodes=3:dyna-mpi-Linux:ncpus=2 -ldyna=6,mem=100mb, software=dyna

is converted to the equivalent:

-l select=3:ncpus=2:mem=33mb: dyna-mpi-Linux=True

-l place=scatter

-l software=dyna

-l dyna=6

7. Requesting licenses using old syntax:

 -l ncpus=2,app_lic=6,mem=200mb -l software=app

is converted to the equivalent:

-l select=1:ncpus=2:mem=200mb

-l place=pack

-l software=app

-l app_lic=6

8. Additional example using old syntax:

-lnodes=1:fserver+15:noserver

is converted to the equivalent:

-l select=1:ncpus=1:fserver=True + 15:ncpus=1:noserver=True

-l place=scatter

but could also be more easily specified with something like:

-l select=1:ncpus=1:fserver=True + 15:ncpus=1:fserver=False

-l place=scatter

9. Allocate 4 vnodes, each with 6 CPUs with 3 MPI processes per vnode, with each
102 PBS Professional 12.1 User’s Guide

Allocating Resources & Placing Jobs Chapter 5
vnode on a separate host. The memory allocated would be one-fourth of the memory
specified by the queue or server default if one existed. This results in a different
placement of the job from version 5.4:

-lnodes=4:ppn=3:ncpus=2

is converted to:

-l select=4:ncpus=6:mpiprocs=3 -l place=scatter

10. Allocate 4 vnodes, from 4 separate hosts, with the property blue. The amount of
memory allocated from each vnode is 2560MB (= 10GB / 4) rather than 10GB from
each vnode.

-lnodes=4:blue:ncpus=2 -l mem=10GB

is converted to:

-l select=4:blue=True:ncpus=2:mem=2560mb -lplace=scatter

5.8.4 Caveats for Using Old Syntax

5.8.4.1 Changes in Behavior

Most jobs submitted with "-lnodes" will continue to work as expected. These jobs will be
automatically converted to the new syntax. However, job tasks may execute in an unexpected
order, because vnodes may be assigned in a different order. Jobs submitted with old syntax
that ran successfully on versions of PBS Professional prior to 8.0 can fail because a limit that
was per-chunk is now job-wide.

Example 5-16: A job submitted using -lnodes=X -lmem=M that fails because the mem
limit is now job-wide. If the following conditions are true:

 - PBS Professional 9.0 or later using standard MPICH

 - The job is submitted with qsub -lnodes=5 -lmem=10GB

 - The master process of this job tries to use more than 2GB

The job is killed, where in <= 7.0 the master process could use 10GB before being killed.
10GB is now a job-wide limit, divided up into a 2GB limit per chunk.

5.8.4.2 Do Not Mix Old and New Styles

Do not mix old style resource or node specifications (“-lresource=value” or “-
lnodes”) with select and place statements (“-lselect=” or “-lplace=”). Do not use
both in the command line. Do not use both in the job script. Do not use one in a job script
and the other on the command line. This will result in an error.
PBS Professional 12.1 User’s Guide 103

Chapter 5 Allocating Resources & Placing Jobs
5.8.4.3 Resource Request Conversion Dependent on Where
Resources are Defined

A job’s resource request is converted from old-style to new according to various rules, one of
which is that the conversion is dependent upon where resources are defined. For example:
The boolean resource “Red” is defined on the server, and the boolean resource “Blue” is
defined at the host level. A job requests “qsub -l Blue=true”. This looks like an old-
style resource request, and PBS checks to see where Blue is defined. Since Blue is defined at
the host level, the request is converted into “-l select=1:Blue=true”. However, if a
job requests “qsub -l Red=true”, while this looks like an old-style resource request,
PBS does not convert it to a chunk request because Red is defined at the server.

5.8.4.4 Properties are Deprecated

The syntax for requesting properties is deprecated. Your administrator has replaced proper-
ties with Booleans.

5.8.4.5 Replace cpp with ncpus

Specifying “cpp” is part of the old syntax, and should be replaced with “ncpus”.

5.8.4.6 Environment Variables Set During Conversion

When a node specification is converted into a select statement, the job has the environment
variables NCPUS and OMP_NUM_THREADS set to the old value of ncpus in the first
piece of the old node specification. This may produce incompatibilities with prior versions
when a complex node specification using different values of ncpus and ppn in different
pieces is converted.
104 PBS Professional 12.1 User’s Guide

Chapter 6
Multiprocessor Jobs

6.1 Submitting Multiprocessor Jobs

Before you read this chapter, please read Chapter 5, "Allocating Resources & Placing Jobs",
on page 69.

6.1.1 Assigning the Chunks You Want

PBS assigns chunks to job processes in the order in which the chunks appear in the select
statement. PBS takes the first chunk from the primary execution host; this is where the top
task of the job runs.

Example 6-1: You want three chunks, where the first has two CPUs and 20 GB of memory,
the second has four CPUs and 100 GB of memory, and the third has one CPU and five
GB of memory:

-lselect=1:ncpus=2:mem=20gb+ncpus=4:mem=100gb+mem=5gb

6.1.1.1 Specifying Primary Execution Host

The job’s primary execution host is the host that supplies the vnode to satisfy the first chunk
requested by the job.

6.1.1.2 Request Most Specific Chunks First

Chunk requests are interpreted from left to right. The more specific the chunk, the earlier it
should be in the order. For example, if you require a specific host for chunk A, but chunk B is
not host-specific, request Chunk A first.
PBS Professional 12.1 User’s Guide 105

Chapter 6 Multiprocessor Jobs
6.1.2 The Job’s Node File

For each job, PBS creates a job-specific “host file” or “node file”, which is a text file contain-
ing the name(s) of the host(s) containing the vnode(s) allocated to that job. The file is created
by the MoM on the primary execution host, and is available only on that host.

6.1.2.1 Node File Format and Contents

The node file contains a list of host names, one per line. The name of the host is the value in
resources_available.host of the allocated vnode(s). The order in which hosts appear in the
PBS node file is the order in which chunks are specified in the selection directive.

The node file contains one line per MPI process with the name of the host on which that pro-
cess should execute. The number of MPI processes for a job, and the contents of the node
file, are controlled by the value of the resource mpiprocs. mpiprocs is the number of MPI
processes per chunk, and defaults to 1 where the chunk contains CPUs, 0 otherwise.

For each chunk requesting mpiprocs=M, the name of the host from which that chunk is allo-
cated is written in the node file M times. Therefore the number of lines in the node file is the
sum of requested mpiprocs for all chunks requested by the job.

Example 6-2: Two MPI processes run on HostA and one MPI process runs on HostB. The
node file looks like this:

HostA

HostA

HostB

6.1.2.2 Name and Location of Node File

The file is created by the MoM on the primary execution host, in PBS_HOME/aux/
JOB_ID, where JOB_ID is the job identifier for that job.

The full path and name for the node file is set in the job’s environment, in the environment
variable PBS_NODEFILE.
106 PBS Professional 12.1 User’s Guide

Multiprocessor Jobs Chapter 6
6.1.2.3 Node File for Old-style Requests

For jobs which request resources using the old -lnodes=nodespec format, the host for each
vnode allocated to the job is listed N times, where N is the number of MPI ranks on the vnode.
The number of MPI ranks is specified via the ppn resource.

Example 6-3: Request four vnodes, each with two MPI processes, where each process has
three threads, and each thread has a CPU:

qsub -lnodes=4:ncpus=3:ppn=2

This results in each of the four hosts being written twice, in the order in which the vnodes
are assigned to the job.

6.1.2.4 Using and Modifying the Node File

You can use $PBS_NODEFILE in your job script.

You can modify the node file. You can remove entries or sort the entries. PBS does not use
the contents of the node file.

6.1.2.5 Node File Caveats

Do not add entries for new hosts; PBS may terminate processes on those hosts because PBS
does not expect the processes to be running there. Adding entries on the same host may cause
the job to be terminated because it is using more CPUs than it requested.

6.1.2.6 Viewing Execution Hosts

You can see which host is the primary execution host: the primary execution host is the first
host listed in the job’s node file.

6.1.3 Specifying Number of MPI Processes Per Chunk

How you request chunks matters. First, the number of MPI processes per chunk defaults to 1
for chunks with CPUs, and 0 for chunks without CPUs, unless you specify this value using
the mpiprocs resource. Second, you can specify whether MPI processes share CPUs. For
example, requesting one chunk with four CPUs and four MPI processes is not the same as
requesting four chunks each with one CPU and one MPI process. In the first case, all four
MPI processes are sharing all four CPUs. In the second case, each process gets its own CPU.
PBS Professional 12.1 User’s Guide 107

Chapter 6 Multiprocessor Jobs
You request the number of MPI processes you want for each chunk using the mpiprocs
resource. For example, to request two MPI processes for each of four chunks, where each
chunk has two CPUs:

-lselect=4:ncpus=2:mpiprocs=2
108 PBS Professional 12.1 User’s Guide

Multiprocessor Jobs Chapter 6
If you don’t explicitly request a value for the mpiprocs resource, it defaults to 1 for each
chunk requesting CPUs, and 0 for chunks not requesting CPUs.

Example 6-4: To request one chunk with two MPI processes and one chunk with one MPI
process, where both chunks have two CPUs:

-lselect=ncpus=2:mpiprocs=2+ncpus=2

Example 6-5: A request for three vnodes, each with one MPI process:

qsub -l select=3:ncpus=2

This results in the following node file:

<hostname for 1st vnode>

<hostname for 2nd vnode>

<hostname for 3rd vnode>

Example 6-6: If you want to run two MPI processes on each of three hosts and have the MPI
processes share a single processor on each host, request the following:

-lselect=3:ncpus=1:mpiprocs=2

The node file then contains the following list:

hostname for VnodeA

hostname for VnodeA

hostname for VnodeB

hostname for VnodeB

hostname for VnodeC

hostname for VnodeC

Example 6-7: If you want three chunks, each with two CPUs and running two MPI processes,
use:

-l select=3:ncpus=2:mpiprocs=2...

The node file then contains the following list:

hostname for VnodeA

hostname for VnodeA

hostname for VnodeB

hostname for VnodeB

hostname for VnodeC

hostname for VnodeC

Notice that the node file is the same as the previous example, even though the number of
CPUs used is different.
PBS Professional 12.1 User’s Guide 109

Chapter 6 Multiprocessor Jobs
Example 6-8: If you want four MPI processes, where each process has its own CPU:

-lselect=4:ncpus=1

See “Built-in Resources” on page 299 of the PBS Professional Reference Guide for a defini-
tions of the mpiprocs resource.

6.1.3.1 Chunks With No MPI Processes

If you request a chunk that has no MPI processes, PBS may take that chunk from a vnode
which has already supplied another chunk. You request a chunk that has no MPI processes
using either of the following:

-lselect=1:ncpus=0

-lselect=1:ncpus=2:mpiprocs=0

6.1.4 Caveats and Advice for Multiprocessor Jobs

6.1.4.1 Requesting Uniform Processors

Some MPI jobs require the work on all vnodes to be at the same stage before moving to the
next stage. For these applications, the work can proceed only at the pace of the slowest
vnode, because faster vnodes must wait while it catches up. In this case, you may find it use-
ful to ensure that the job’s vnodes are homogeneous.

If there is a resource that identifies the architecture, type, or speed of the vnodes, you can use
it to ensure that all chunks are taken from vnodes with the same value. You can either request
a specific value for this resource for all chunks, or you can group vnodes according to the
value of the resource. See section 5.7.1.3, “Grouping on a Resource”, on page 93.

Example 6-9: The resource that identifies the speed is named speed, and your job requests
16 chunks, each with two CPUs, two MPI processes, all with speed equal to fast:

-lselect=16:ncpus=2:mpiprocs=2:speed=fast

Example 6-10: Request 16 chunks where each chunk has two CPUs, using grouping to ensure
that all chunks share the same speed. The resource that identifies the speed is named
speed:

-lselect=16:ncpus=2:mpiprocs=2:place=group=speed
110 PBS Professional 12.1 User’s Guide

Multiprocessor Jobs Chapter 6
6.1.4.2 Requesting Storage on NFS Server

One of the vnodes in your complex may act as an NFS server to the rest of the vnodes, so that
all vnodes have access to the storage on the NFS server.

Example 6-11: The scratch resource is shared among all the vnodes in the complex, and is
requested from a central location, called the “nfs_server” vnode. To request two
vnodes, each with two CPUs to do calculations, and one vnode with 10gb of memory and
no MPI processes:

-l select=2:ncpus=2+1:host=nfs_server:scratch=10gb:ncpus=0

With this request, your job has one MPI process on each chunk containing CPUs, and no
MPI processes on the memory-only chunk. The job shows up as having a chunk on the
“nfs_server” host.

6.1.5 File Staging for Multiprocessor Jobs

PBS stages files to and from the primary execution host only.

6.1.6 Prologue and Epilogue

The prologue is run as root on the primary host, with the current working directory set to
PBS_HOME/mom_priv, and with PBS_JOBDIR and TMPDIR set in its environment.

PBS runs the epilogue as root on the primary host. The epilogue is executed with its current
working directory set to the job's staging and execution directory, and with PBS_JOBDIR
and TMPDIR set in its environment.

6.1.7 MPI Environment Variables

NCPUS
PBS sets the NCPUS environment variable in the job’s environment on the
primary execution host. PBS sets NCPUS to the value of ncpus requested
for the first chunk.

OMP_NUM_THREADS
PBS sets the OMP_NUM_THREADS environment variable in the job’s
environment on the primary execution host. PBS sets this variable to the
value of ompthreads requested for the first chunk, which defaults to the
value of ncpus requested for the first chunk.
PBS Professional 12.1 User’s Guide 111

Chapter 6 Multiprocessor Jobs
6.1.8 Examples of Multiprocessor Jobs

Example 6-12: For a 10-way MPI job with 2gb of memory per MPI task:

qsub -l select=10:ncpus=1:mem=2gb

Example 6-13: If you have a cluster of small systems with for example two CPUs each, and
you wish to submit an MPI job that will run on four separate hosts:

qsub -l select=4:ncpus=1 -l place=scatter

In this example, the node file contains one entry for each of the hosts allocated to the job,
which is four entries.

The variables NCPUS and OMP_NUM_THREADS are set to one.

Example 6-14: If you do not care where the four MPI processes are run:

qsub -l select=4:ncpus=1 -l place=free

Here, the job runs on two, three, or four hosts depending on what is available.

For this example, the node file contains four entries. These are either four separate hosts,
or three hosts, one of which is repeated once, or two hosts, etc.

NCPUS and OMP_NUM_THREADS are set to 1, the number of CPUs allocated from
the first chunk.

6.1.9 Submitting SMP Jobs

To submit an SMP job, simply request a single chunk containing all of the required CPUs and
memory, and if necessary, specify the hostname. For example:

qsub -l select=ncpus=8:mem=20gb:host=host1

When the job is run, the node file will contain one entry, the name of the selected execution
host.

The job will have two environment variables, NCPUS and OMP_NUM_THREADS, set to
the number of CPUs allocated.
112 PBS Professional 12.1 User’s Guide

Multiprocessor Jobs Chapter 6
6.2 Using MPI with PBS

6.2.1 Using an Integrated MPI

Many MPIs are integrated with PBS. PBS provides tools to integrate most of them; a few
MPIs supply the integration. When a job is run under an integrated MPI, PBS can track
resource usage, signal job processes, and perform accounting for all processes of the job.

When a job is run under an MPI that is not integrated with PBS, PBS is limited to managing
the job only on the primary vnode, so resource tracking, job signaling, and accounting happen
only for the processes on the primary vnode.

The instructions that follow are for integrated MPIs. Check with your administrator to find
out which MPIs are integrated at your site. If an MPI is not integrated with PBS, you use it as
you would outside of PBS.

Some of the integrated MPIs have slightly different command lines. See the instructions for
each MPI.

The following table lists the supported MPIs and gives links to instructions for using each
MPI:

Table 6-1: List of Supported MPIs

MPI Name Versions Instructions for Use

HP MPI 1.08.03

2.0.0

See section 6.2.4, “HP MPI with PBS”, on page
117

IBM POE AIX 5.x, 6.x See section 6.2.5, “IBM POE with PBS”, on
page 118

Intel MPI 2.0.022

3

4

See section 6.2.6, “Intel MPI with PBS”, on
page 125

LAM MPI 6.5.9 Deprecated. See section 6.2.7.2, “Using LAM
6.5.9 with PBS”, on page 130

LAM MPI 7.0.6

7.1.1

See section 6.2.7.1, “Using LAM 7.x with
PBS”, on page 130
PBS Professional 12.1 User’s Guide 113

Chapter 6 Multiprocessor Jobs
6.2.1.1 Integration Caveats

• Under Windows, MPIs are not integrated with PBS. PBS is limited to tracking resources,
signaling jobs, and performing accounting only for job processes on the primary vnode.

• Some MPI command lines are slightly different; the differences for each are described.

MPICH-P4 1.2.5

1.2.6

1.2.7

See section 6.2.8, “MPICH-P4 with PBS”, on
page 131

MPICH-GM See section 6.2.9, “MPICH-GM with PBS”, on
page 133

MPICH-MX See section 6.2.10, “MPICH-MX with PBS”, on
page 136

MPICH2 1.0.3

1.0.5

1.0.7

See section 6.2.11, “MPICH2 with PBS”, on
page 140

MVAPICH 1.2 See section 6.2.12, “MVAPICH with PBS”, on
page 144

MVAPICH2 1.8 See section 6.2.13, “MVAPICH2 with PBS”, on
page 146

Open MPI 1.4.x See section 6.2.14, “Open MPI with PBS”, on
page 149

Platform MPI 8.0 See section 6.2.15, “Platform MPI with PBS”,
on page 149

SGI MPT Any See section 6.2.16, “SGI MPT with PBS”, on
page 149

Table 6-1: List of Supported MPIs

MPI Name Versions Instructions for Use
114 PBS Professional 12.1 User’s Guide

Multiprocessor Jobs Chapter 6
6.2.1.2 Integrating an MPI on the Fly using the pbs_tmrsh
Command

The PBS administrator can perform the steps to integrate the supported MPIs. For non-inte-
grated MPIs, you can integrate them on the fly using the pbs_tmrsh command. You should
not use pbs_tmrsh with an integrated MPI.

This command emulates rsh, but uses the PBS TM interface to talk directly to pbs_mom on
sister vnodes. The pbs_tmrsh command informs the primary and sister MoMs about job
processes on sister vnodes. When the job uses pbs_tmrsh, PBS can track resource usage
for all job processes.

You use pbs_tmrsh as your rsh or ssh command. To use pbs_tmrsh, set the appropri-
ate environment variable to pbs_tmrsh. For example, to integrate MPICH, set the
P4_RSHCOMMAND environment variable to pbs_tmrsh, and to integrate HP MPI, set
MPI_REMSH to pbs_tmrsh.
PBS Professional 12.1 User’s Guide 115

Chapter 6 Multiprocessor Jobs
The following figure illustrates how the pbs_tmrsh command can be used to integrate an
MPI on the fly:

6.2.1.2.i Caveats for the pbs_tmrsh Command

• This command cannot be used outside of a PBS job; if used outside a PBS job, this com-
mand will fail.

• The pbs_tmrsh command does not perform exactly like rsh. For example, you can-
not pipe output from pbs_tmrsh; this will fail.

6.2.2 Prerequisites to Using MPI with PBS

The MPI that you intend to use with PBS must be working before you try to use it with PBS.
You must be able to run an MPI job outside of PBS.

Figure 6-1: PBS knows about processes on vnodes 2 and 3, because pbs_tmrsh talks
directly to pbs_mom, and pbs_mom starts the processes on vnodes 2 and 3

Vnode 3

...

(Job script)

Vnode 1

#PBS −lselect=3:ncpus=2:mpiprocs=2

...

Session tracked by pbs_mom

(mpirun using pbs_tmrsh) −hostfile $PBS_NODEFILE a.out

Vnode 2

a.outpbs_mom

pbs_tmrsh vnode 2

pbs_tmrsh vnode 3

a.out

a.out

a.out

pbs_mom

a.out

a.out
116 PBS Professional 12.1 User’s Guide

Multiprocessor Jobs Chapter 6
6.2.3 Caveats for Using MPIs

Some applications write scratch files to a temporary location. PBS makes a temporary direc-
tory available for this, and puts the path in the TMPDIR environment variable. The location
of the temporary directory is host-dependent. If you are using an MPI other than LAM MPI
or Open MPI, and your application needs scratch space, the temporary directory for the job
should be consistent across execution hosts. Your PBS administrator can specify a root for the
temporary directory on each host using the $tmpdir MoM parameter. In this case, the TMP-

DIR environment variable is set to the full path of the resulting temporary directory. Do not
attempt to set TMPDIR.

6.2.4 HP MPI with PBS

HP MPI can be integrated with PBS on UNIX and Linux so that PBS can track resource
usage, signal processes, and perform accounting, for all job processes. Your PBS administra-
tor can integrate HP MPI with PBS.

6.2.4.1 Setting up Your Environment for HP MPI

In order to override the default rsh, set PBS_RSHCOMMAND in your job script:

export PBS_RSHCOMMAND=<rsh choice>

6.2.4.2 Using HP MPI with PBS

You can run jobs under PBS using HP MPI without making any changes to your MPI com-
mand line.

6.2.4.3 Options

When running a PBS HP MPI job, you can use the same arguments to the mpirun command
as you would outside of PBS. The following options are treated differently under PBS:

-h <host>
Ignored

-l <user>
Ignored

-np <number>
Modified to fit the available resources
PBS Professional 12.1 User’s Guide 117

Chapter 6 Multiprocessor Jobs
6.2.4.4 Caveats for HP MPI with PBS

Under the integrated HP MPI, the job’s working directory is changed to your home directory.

6.2.5 IBM POE with PBS

When you are using AIX machines running IBM’s Parallel Operating Environment, or POE,
you can run PBS jobs using either the HPS or InfiniBand, whichever is available. You can use
either IP or US mode. PBS manages InfiniBand or the HPS. LoadLeveler is not required in
order to use InfiniBand switches in User Space mode.

PBS can track the resources for MPI, LAPI programs or a mix of MPI and LAPI programs.

Any job that can run under IBM poe can run under PBS. There are some exceptions and dif-
ferences; under PBS, the poe command is slightly different. See section 6.2.5.5, “poe
Options and Environment Variables”, on page 120.

6.2.5.1 Using the InfiniBand Switch

To ensure that a job uses the InfiniBand switch, make sure that the job’s environment has
PBS_GET_IBWINS set to 1. This can be accomplished the following ways:

• The administrator sets this value for all jobs.

• You can set the environment variable for each job: set PBS_GET_IBWINS = 1 in your
shell environment, and use the -V option to every qsub command. See the previous sec-
tion.

 - csh:

setenv PBS_GET_IBWINS 1

 - bash:

PBS_GET_IBWINS = 1

export PBS_GET_IBWINS

• You can set the environment variable for one job; use the “-v PBS_GET_IBWINS = 1”
option to the qsub command.

6.2.5.2 Using the HPS

If an HPS is available on the AIX machine where your job runs, PBS runs your jobs so that
they use the HPS.
118 PBS Professional 12.1 User’s Guide

Multiprocessor Jobs Chapter 6
In order to make sure that your job runs on this machine, you can request the resource repre-
senting the HPS. We recommend that this resource is called hps. We recommend that this
resource is a host-level Boolean defined on each host on the HPS; check with your adminis-
trator.

6.2.5.3 Specifying Number of Ranks

Make sure that you request the number of MPI ranks that you want, since PBS calculates the
number of windows based on the number of ranks. You can use the mpiprocs resource to
specify the number of MPI processes for each chunk. See section 6.1.3, “Specifying Number
of MPI Processes Per Chunk”, on page 107.

Example 6-15: To request two vnodes, each with eight CPUs and one MPI rank, for a total of
16 CPUs and two ranks:

select=2:ncpus=8

Example 6-16: To request two vnodes, each with eight CPUs and eight MPI ranks, for a total
of 16 CPUs and 16 ranks:

select=2:ncpus=8:mpiprocs=8

6.2.5.3.i If Your Complex Contains HPS and Non-HPS Machines

If your complex contains machines on the HPS and machines that are not on the HPS, and you
wish to run on the HPS, you must specify machines on the HPS. To specify machines on the
HPS, you must request the HPS resource in your select statement. This resource is configured
by your PBS administrator. We recommend that this resource is a host-level Boolean, but it
could be an integer; check with your PBS administrator.

Example 6-17: Request four chunks using place=scatter. The HPS resource is a Bool-
ean called hps. Each host must have hps=True:

% qsub -l select=4:ncpus=2:hps=true -lplace=scatter

Example 6-18: Same placement as previous example; request four chunks using
place=pack. Only one host is used, and you can have each chunk request the HPS.
The HPS resource is a Boolean called hps:

% qsub -l select=4:ncpus=2:hps=true -l place=pack

If your PBS administrator has configured a host-level integer resource instead of a Boolean
resource, make sure that you request the correct value for this resource; see your PBS admin-
istrator.
PBS Professional 12.1 User’s Guide 119

Chapter 6 Multiprocessor Jobs
6.2.5.4 Restrictions on poe Jobs

• Outside of PBS, you can run poe, but you will see this warning:
pbsrun.poe: Warning, not running under PBS

• Inside PBS, you cannot run poe jobs without arguments. Attempting to do this will give
the following error:
pbsrun.poe: Error, interactive program name entry not supported under PBS

poe exits with a value of 1.

• Some environment variables and options to poe behave differently under PBS. These
differences are described in the next section.

• The maximum number of ranks that can be launched is the number of entries in
$PBS_NODEFILE.

6.2.5.5 poe Options and Environment Variables

The usage for poe is:

poe [program] [program_options] [poe options]

When submitting jobs to poe, you can set environment variables instead of using options to
poe. The equivalent environment variable is listed with its poe option. All options and
environment variables except the following are passed to poe:

-devtype, MP_DEVTYPE
If InfiniBand is not specified in either the option or the environment vari-
able, US mode is not used for the job.

-euidevice, MP_EUIDEVICE
Ignored by PBS.

-euilib {ip|us}, MP_EUILIB
If set to us, the job runs in User Space mode.

If set to any other value, that value is passed to IBM poe.

If the command line option -euilib is set, it takes precedence over the
MP_EUILIB environment variable.

-hostfile, -hfile, MP_HOSTFILE
Ignored. If this is specified, PBS prints the following:

pbsrun.poe: Warning, -hostfile value replaced by PBS

or

pbsrun.poe: Warning -hfile value replaced by PBS
120 PBS Professional 12.1 User’s Guide

Multiprocessor Jobs Chapter 6
If this environment variable is set when a poe job is submitted, PBS prints
the following error message:

pbsrun.poe: Warning MP_HOSTFILE value replaced by PBS

-instances, MP_INSTANCES
The option and the environment variable are treated differently:

-instances

If the option is set, PBS prints a warning:

pbsrun.poe: Warning, -instances cmd line option removed by
PBS

MP_INSTANCES

If the environment variable is set, PBS uses it to calculate the number of
network windows for the job.

The maximum value allowed can be requested by using the string
“max” for the environment variable.

If the environment variable is set to a value greater than the maximum
allowed value, it is replaced with the maximum allowed value.

The default maximum value is 4.

-procs, MP_PROCS
This option or environment variable should be set to the total number of
mpiprocs requested by the job when using US mode.

If neither this option nor the MP_PROCS environment variable is set, PBS
uses the number of entries in $PBS_NODEFILE.

If this option is set to N, and the job is submitted with a total of M
mpiprocs:

If N >=M: The value N is passed to IBM poe.

If N < M and US mode is not being used: The value N is passed to poe.

If N < M and US mode is being used: US mode is turned off and a warning
is printed:

pbsrun.poe: Warning, user mode disabled due to MP_PROCS setting
PBS Professional 12.1 User’s Guide 121

Chapter 6 Multiprocessor Jobs
6.2.5.6 Caveats for POE

6.2.5.6.i Multi-host Jobs on POE

If you wish to run a multi-host job, it must not run on a mix of InfiniBand and non-InfiniBand
hosts. It can run entirely on hosts that are non-InfiniBand., or on hosts that are all using
InfiniBand, but not both.

6.2.5.6.ii Maximum Number of Ranks on POE

The maximum number of ranks that can be launched under integrated POE is the number of
entries in $PBS_NODEFILE.

6.2.5.6.iii Run Jobs in Foreground on POE

Since PBS is tracking tasks started by poe, these tasks are counted towards your run limits.
Running multiple poe jobs in the background will not work. Instead, run poe jobs one after
the other or submit separate jobs. Otherwise switch windows will be used by more than one
task. The tracejob command will show any of various error messages.

6.2.5.6.iv Job Submission Format on POE

Do not submit InfiniBand jobs in which the select statement specifies only a number, for
example:

$ export PBS_GET_IBWINS=1

$ qsub -koe -mn -l select=1 -V jobname

Instead, use the equivalent request which specifies a resource:

$ export PBS_GET_IBWINS=1

$ qsub -koe -mn -l select=1:ncpus=1 -V jobname

6.2.5.6.v Environment Variables under POE

Do not set the PBS_O_HOST environment variable. If you do so, using the qsub command
with the -V option will fail.

6.2.5.7 Useful Information

6.2.5.7.i IBM Documentation

For more information on using IBM’s Parallel Operating Environment, see “IBM Parallel
Environment for AIX 5L Hitchhiker’s Guide”.
122 PBS Professional 12.1 User’s Guide

Multiprocessor Jobs Chapter 6
6.2.5.7.ii Sources for Sample Code

When installing the ppe.poe fileset there are three directories containing sample code that
may be of interest (from “How installing the POE fileset alters your system”):

• Directory containing sample code for running User Space POE jobs without LoadLev-
eler:
/usr/lpp/ppe.poe/samples/swtbl

• Directory containing sample code for running User Space jobs without LoadLeveler,
using the network table API:
/usr/lpp/ppe.poe/samples/ntbl

• Directory that contains the sample code for running User Space jobs on InfiniBand inter-
connects, without LoadLeveler, using the network resource table API:
/usr/lpp/ppe.poe/samples/nrt

6.2.5.8 Examples Using poe

Example 6-19: Using IP mode, run a single executable poe job with four ranks on hosts
spread across the PBS-allocated hosts listed in $PBS_NODEFILE:

% cat $PBS_NODEFILE

host1

host2

host3

host4

% cat job.script

poe /path/mpiprog -euilib ip

% qsub -l select=4:ncpus=1 -lplace=scatter

job.script

Example 6-20: Using US mode, run a single executable poe job with four ranks on hosts
spread across the PBS-allocated hosts listed in $PBS_NODEFILE:

% cat $PBS_NODEFILE

host1

host2

host3

host4
PBS Professional 12.1 User’s Guide 123

Chapter 6 Multiprocessor Jobs
% cat job.script

poe /path/mpiprog -euilib us

% qsub -l select=4:ncpus=1 -lplace=scatter

job.script

Example 6-21: Using IP mode, run executables prog1 and prog2 with two ranks of prog1 on
host1, two ranks of prog2 on host2 and two ranks of prog2 on host3:

% cat $PBS_NODEFILE

host1

host1

host2

host2

host3

host3

% cat job.script

echo prog1 > /tmp/poe.cmd

echo prog1 >> /tmp/poe.cmd

echo prog2 >> /tmp/poe.cmd

echo prog2 >> /tmp/poe.cmd

echo prog2 >> /tmp/poe.cmd

echo prog2 >> /tmp/poe.cmd

poe -cmdfile /tmp/poe.cmd -euilib ip

rm /tmp/poe.cmd

% qsub -l select=3:ncpus=2:mpiprocs=2 -l place=scatter job.script
124 PBS Professional 12.1 User’s Guide

Multiprocessor Jobs Chapter 6
Example 6-22: Using US mode, run executables prog1 and prog2 with two ranks of prog1 on
host1, two ranks of prog2 on host2 and two ranks of prog2 on host3:

% cat $PBS_NODEFILE

host1

host1

host2

host2

host3

host3

% cat job.script

echo prog1 > /tmp/poe.cmd

echo prog1 >> /tmp/poe.cmd

echo prog2 >> /tmp/poe.cmd

echo prog2 >> /tmp/poe.cmd

echo prog2 >> /tmp/poe.cmd

echo prog2 >> /tmp/poe.cmd

poe -cmdfile /tmp/poe.cmd -euilib us

rm /tmp/poe.cmd

% qsub -l select=3:ncpus=2:mpiprocs=2 -l place=scatter job.script

6.2.6 Intel MPI with PBS

PBS provides an interface to Intel MPI’s mpirun. If executed inside a PBS job, this allows
for PBS to track all Intel MPI processes so that PBS can perform accounting and have com-
plete job control. If executed outside of a PBS job, it behaves exactly as if standard Intel
MPI's mpirun was used.

6.2.6.1 Using Intel MPI Integrated with PBS

You use the same mpirun command as you would use outside of PBS.
PBS Professional 12.1 User’s Guide 125

Chapter 6 Multiprocessor Jobs
When submitting PBS jobs that invoke the PBS-supplied interface to mpirun for Intel MPI,
be sure to explicitly specify the actual number of ranks or MPI tasks in the qsub select
specification. Otherwise, jobs will fail to run with "too few entries in the
machinefile".

For an example of this problem, specification of the following:

#PBS -l select=1:ncpus=1:host=hostA+1:ncpus=2:host=hostB

mpirun -np 3 /tmp/mytask

results in the following node file:

hostA

hostB

which conflicts with the "-np 3" specification in mpirun since only two MPD daemons are
started.

The correct way is to specify either of the following:

#PBS -l select=1:ncpus=1:host=hostA+2:ncpus=1:host=hostB

#PBS -l select=1:ncpus=1:host=hostA+1:ncpus=2:host=hostB:mpiprocs=2

which causes the node file to contain:

hostA

hostB

hostB

and is consistent with "mpirun -np 3".

6.2.6.2 Options to Integrated Intel MPI

If executed inside a PBS job script, all of the options to the PBS interface are the same as for
Intel MPI’s mpirun except for the following:

-host, -ghost
For specifying the execution host to run on. Ignored.

-machinefile <file>
The file argument contents are ignored and replaced by the contents of
$PBS_NODEFILE.

mpdboot option --totalnum=*
Ignored and replaced by the number of unique entries in
$PBS_NODEFILE.
126 PBS Professional 12.1 User’s Guide

Multiprocessor Jobs Chapter 6
mpdboot option --file=*
Ignored and replaced by the name of $PBS_NODEFILE. The argument to
this option is replaced by $PBS_NODEFILE.

Argument to mpdboot option -f <mpd_hosts_file> replaced by
$PBS_NODEFILE.

-s
If the PBS interface to Intel MPI’s mpirun is called inside a PBS job, Intel
MPI’s mpirun -s argument to mpdboot is not supported as this closely
matches the mpirun option "-s <spec>". You can simply run a sepa-
rate mpdboot -s before calling mpirun. A warning message is issued
by the PBS interface upon encountering a -s option describing the sup-
ported form.

-np
If you do not specify a -np option, then no default value is provided by the
PBS interface. It is up to the standard mpirun to decide what the reason-
able default value should be, which is usually 1. The maximum number of
ranks that can be launched is the number of entries in $PBS_NODEFILE.

6.2.6.3 MPD Startup and Shutdown

Intel MPI's mpirun takes care of starting and stopping the MPD daemons. The PBS inter-
face to Intel MPI’s mpirun always passes the arguments -totalnum=<number of
mpds to start> and -file=<mpd_hosts_file> to the actual mpirun, taking its
input from unique entries in $PBS_NODEFILE.

6.2.6.4 Examples

Example 6-23: Run a single-executable Intel MPI job with six processes spread out across the
PBS-allocated hosts listed in $PBS_NODEFILE:

Node file:

pbs-host1

pbs-host1

pbs-host2

pbs-host2

pbs-host3

pbs-host3
PBS Professional 12.1 User’s Guide 127

Chapter 6 Multiprocessor Jobs

Job script:

mpirun takes care of starting the MPD

daemons on unique hosts listed in

$PBS_NODEFILE, and also runs the 6 processes

on the 6 hosts listed in

$PBS_NODEFILE; mpirun takes care of

shutting down MPDs.

mpirun /path/myprog.x 1200

Run job script:

qsub -l select=3:ncpus=2:mpiprocs=2 job.script

<job-id>

Example 6-24: Run an Intel MPI job with multiple executables on multiple hosts using
$PBS_NODEFILE and mpiexec arguments to mpirun:

$PBS_NODEFILE:

hostA

hostA

hostB

hostB

hostC

hostC

Job script:

mpirun runs MPD daemons on hosts listed in $PBS_NODEFILE

mpirun runs 2 instances of mpitest1

on hostA; 2 instances of mpitest2 on

hostB; 2 instances of mpitest3 on hostC.

mpirun takes care of shutting down the

MPDs at the end of MPI job run.

mpirun -np 2 /tmp/mpitest1 : -np 2 /tmp/mpitest2 : -np 2 /tmp/mpitest3
128 PBS Professional 12.1 User’s Guide

Multiprocessor Jobs Chapter 6
Run job script:

qsub -l select=3:ncpus=2:mpiprocs=2 job.script

 <job-id>

Example 6-25: Run an Intel MPI job with multiple executables on multiple hosts via the
-configfile option and $PBS_NODEFILE:

$PBS_NODEFILE:

hostA

hostA

hostB

hostB

hostC

hostC

Job script:

echo “-np 2 /tmp/mpitest1” >> my_config_file

echo “-np 2 /tmp/mpitest2” >> my_config_file

echo “-np 2 /tmp/mpitest3” >> my_config_file

mpirun takes care of starting the MPD daemons

config file says run 2 instances of mpitest1

on hostA; 2 instances of mpitest2 on

hostB; 2 instances of mpitest3 on hostC.

mpirun takes care of shutting down the MPD daemons.

mpirun -configfile my_config_file

cleanup

rm -f my_config_file

Run job script:

qsub -l select=3:ncpus=2:mpiprocs=2 job.script

<job-id>
PBS Professional 12.1 User’s Guide 129

Chapter 6 Multiprocessor Jobs
6.2.6.5 Restrictions

The maximum number of ranks that can be launched under integrated Intel MPI is the number
of entries in $PBS_NODEFILE.

6.2.7 LAM MPI with PBS

LAM MPI can be integrated with PBS on UNIX and Linux so that PBS can track resource
usage, signal processes, and perform accounting, for all job processes. Your PBS administra-
tor can integrate LAM MPI with PBS.

6.2.7.1 Using LAM 7.x with PBS

You can run jobs under PBS using LAM 7.x without making any changes to your mpirun
call.

6.2.7.2 Using LAM 6.5.9 with PBS

Support for LAM 6.5.9 is deprecated. You can run jobs under PBS using LAM 6.5.9.

6.2.7.2.i Caveats for LAM 6.5.9 with PBS

• If you specify the bhost argument, PBS will print a warning saying that the bhost
argument is ignored by PBS.

• If you do not specify the where argument, pbs_mpilam will try to run the your pro-
gram on all available CPUs using the C keyword.
130 PBS Professional 12.1 User’s Guide

Multiprocessor Jobs Chapter 6
6.2.7.3 Example Job Submission Script

The following is a simple PBS job script for use with LAM MPI:

#!/bin/bash

Job Name

#PBS -N LamSubTest

Merge output and error files

#PBS -j oe

Select 2 nodes with 1 CPU each

#PBS -l select=2:ncpus=1

Export Users Environmental Variables to Execution Host

#PBS -V

Send email on abort, begin and end

#PBS -m abe

Specify mail recipient

#PBS -M username@example.com

cd $PBS_O_WORKDIR

date

lamboot -v $PBS_NODEFILE

mpirun -np $(cat $PBS_NODEFILE|wc -l) ./ANY_C_MPI_CODE HERE

date

When using the integrated lamboot in a job script, lamboot takes input from
$PBS_NODEFILE automatically, so the argument is not necessary.

6.2.7.4 See Also

For information on LAM MPI, see www.lam-mpi.org/.

6.2.8 MPICH-P4 with PBS

MPICH-P4 can be integrated with PBS on UNIX and Linux so that PBS can track resource
usage, signal processes, and perform accounting, for all job processes. Your PBS administra-
tor can integrate MPICH-P4 with PBS.
PBS Professional 12.1 User’s Guide 131

Chapter 6 Multiprocessor Jobs
6.2.8.1 Options for MPICH-P4 with PBS

Under PBS, the syntax and arguments for the MPICH-P4 mpirun command on Linux are the
same except for one option, which you should not set:

-machinefile file
PBS supplies the machinefile. If you try to specify it, PBS prints a warning
that it is replacing the machinefile.

6.2.8.2 Example of Using MPICH-P4 with PBS

Example of using mpirun:

#PBS -l select=arch=linux

#

mpirun a.out

6.2.8.3 MPICH Under Windows

Under Windows, you may need to use the -localroot option to MPICH’s mpirun com-
mand in order to allow the job’s processes to run more efficiently, or to get around the error
"failed to communicate with the barrier command". Here is an example
job script:

C:\DOCUME~1\user1>type job.scr

echo begin

type %PBS_NODEFILE%

"\Program Files\MPICH\mpd\bin\mpirun" -localroot -np 2 -machinefile
%PBS_NODEFILE% \winnt\temp\netpipe -reps 3

echo done

6.2.8.3.i Caveats for MPICH Under Windows

Under Windows, MPICH is not integrated with PBS. Therefore, PBS is limited to tracking
and controlling processes and performing accounting only for job processes on the primary
vnode.
132 PBS Professional 12.1 User’s Guide

Multiprocessor Jobs Chapter 6
6.2.9 MPICH-GM with PBS

6.2.9.1 Using MPICH-GM and MPD with PBS

PBS provides an interface to MPICH-GM’s mpirun using MPD. If executed inside a PBS
job, this allows for PBS to track all MPICH-GM processes started by the MPD daemons so
that PBS can perform accounting and have complete job control. If executed outside of a PBS
job, it behaves exactly as if standard mpirun with MPD had been used.

You use the same mpirun command as you would use outside of PBS. If the MPD daemons
are not already running, the PBS interface will take care of starting them for you.

6.2.9.1.i Options

Inside a PBS job script, all of the options to the PBS interface are the same as mpirun with
MPD except for the following:

-m <file>
The file argument contents are ignored and replaced by the contents of
$PBS_NODEFILE.

-np
If not specified, the number of entries found in $PBS_NODEFILE is used.
The maximum number of ranks that can be launched is the number of
entries in $PBS_NODEFILE

-pg
The use of the -pg option, for having multiple executables on multiple
hosts, is allowed but it is up to you to make sure only PBS hosts are speci-
fied in the process group file; MPI processes spawned on non-PBS hosts are
not guaranteed to be under the control of PBS.

6.2.9.1.ii MPD Startup and Shutdown

The script starts MPD daemons on each of the unique hosts listed in $PBS_NODEFILE,
using either the rsh or ssh method based on the value of the environment variable RSH-

COMMAND. The default is rsh. The script also takes care of shutting down the MPD dae-
mons at the end of a run.

If the MPD daemons are not running, the PBS interface to mpirun will start GM's MPD dae-
mons as you on the allocated PBS hosts. The MPD daemons may have been started already
by the administrator or by you. MPD daemons are not started inside a PBS prologue script
since it won't have the path of mpirun that you executed (GM or MX), which would deter-
mine the path to the MPD binary.
PBS Professional 12.1 User’s Guide 133

Chapter 6 Multiprocessor Jobs
6.2.9.1.iii Examples

Example 6-26: Run a single-executable MPICH-GM job with 3 processes spread out across
the PBS-allocated hosts listed in $PBS_NODEFILE:

$PBS_NODEFILE:

pbs-host1

pbs-host2

pbs-host3

qsub -l select=3:ncpus=1

[MPICH-GM-HOME]/bin/mpirun -np 3 /path/myprog.x 1200

^D

<job-id>

If the GM MPD daemons are not running, the PBS interface to mpirun will start them
as you on the allocated PBS hosts. The daemons may have been previously started by
the administrator or by you.

Example 6-27: Run an MPICH-GM job with multiple executables on multiple hosts listed in
the process group file procgrp:

Job script:

qsub -l select=2:ncpus=1

echo "host1 1 user1 /x/y/a.exe arg1 arg2" > procgrp

echo "host2 1 user1 /x/x/b.exe arg1 arg2" >> procgrp

[MPICH-GM-HOME]/bin/mpirun -pg procgrp /path/mypro.x 1200

rm -f procgrp

^D

<job-id>

When the job runs, mpirun gives the warning message:

warning: “-pg” is allowed but it is up to user to make sure only PBS hosts
are specified; MPI processes spawned are not guaranteed to be under
PBS-control.

The warning is issued because if any of the hosts listed in procgrp are not under the
control of PBS, then the processes on those hosts will not be under the control of PBS.
134 PBS Professional 12.1 User’s Guide

Multiprocessor Jobs Chapter 6
6.2.9.2 Using MPICH-GM and rsh/ssh with PBS

PBS provides an interface to MPICH-GM’s mpirun using rsh/ssh. If executed inside a
PBS job, this lets PBS track all MPICH-GM processes started via rsh/ssh so that PBS can
perform accounting and have complete job control. If executed outside of a PBS job, it
behaves exactly as if standard mpirun had been used.

You use the same mpirun command as you would use outside of PBS.

6.2.9.2.i Options

Inside a PBS job script, all of the options to the PBS interface are the same as mpirun except
for the following:

-machinefile <file>
The file argument contents are ignored and replaced by the contents of
$PBS_NODEFILE.

-np
If not specified, the number of entries found in $PBS_NODEFILE is used.
The maximum number of ranks that can be launched is the number of
entries in $PBS_NODEFILE.

-pg
The use of the -pg option, for having multiple executables on multiple
hosts, is allowed but it is up to you to make sure only PBS hosts are speci-
fied in the process group file; MPI processes spawned on non-PBS hosts
are not guaranteed to be under the control of PBS.

6.2.9.2.ii Examples

Example 6-28: Run a single-executable MPICH-GM job with 64 processes spread out across
the PBS-allocated hosts listed in $PBS_NODEFILE:

$PBS_NODEFILE:

pbs-host1

pbs-host2

...

pbs-host64
PBS Professional 12.1 User’s Guide 135

Chapter 6 Multiprocessor Jobs
qsub -l select=64:ncpus=1 -l place=scatter

mpirun -np 64 /path/myprog.x 1200

^D

<job-id>

Example 6-29: Run an MPICH-GM job with multiple executables on multiple hosts listed in
the process group file procgrp:

qsub -l select=2:ncpus=1

echo "host1 1 user1 /x/y/a.exe arg1 arg2" > procgrp

echo "host2 1 user1 /x/x/b.exe arg1 arg2" >> procgrp

mpirun -pg procgrp /path/mypro.x

rm -f procgrp

^D

<job-id>

When the job runs, mpirun gives this warning message:

warning: “-pg” is allowed but it is up to user to make sure only PBS hosts
are specified; MPI processes spawned are not guaranteed to be under the
control of PBS.

The warning is issued because if any of the hosts listed in procgrp are not under the
control of PBS, then the processes on those hosts will not be under the control of PBS.

6.2.9.3 Restrictions

The maximum number of ranks that can be launched under integrated MPICH-GM is the
number of entries in $PBS_NODEFILE.

6.2.10 MPICH-MX with PBS

6.2.10.1 Using MPICH-MX and MPD with PBS

PBS provides an interface to MPICH-MX’s mpirun using MPD. If executed inside a PBS
job, this allows for PBS to track all MPICH-MX processes started by the MPD daemons so
that PBS can perform accounting and have complete job control. If executed outside of a PBS
job, it behaves exactly as if standard MPICH-MX mpirun with MPD was used.
136 PBS Professional 12.1 User’s Guide

Multiprocessor Jobs Chapter 6
You use the same mpirun command as you would use outside of PBS. If the MPD daemons
are not already running, the PBS interface will take care of starting them for you.

6.2.10.1.i Options

Inside a PBS job script, all of the options to the PBS interface are the same as mpirun with
MPD except for the following:

-m <file>
The file argument contents are ignored and replaced by the contents of
$PBS_NODEFILE.

-np
If not specified, the number of entries found in $PBS_NODEFILE is used.
The maximum number of ranks that can be launched is the number of
entries in $PBS_NODEFILE.

-pg
The use of the -pg option, for having multiple executables on multiple
hosts, is allowed but it is up to you to make sure only PBS hosts are speci-
fied in the process group file; MPI processes spawned on non-PBS hosts
are not guaranteed to be under the control of PBS.

6.2.10.1.ii MPD Startup and Shutdown

The PBS mpirun interface starts MPD daemons on each of the unique hosts listed in
$PBS_NODEFILE, using either the rsh or ssh method, based on value of environment
variable RSHCOMMAND. The default is rsh. The interface also takes care of shutting
down the MPD daemons at the end of a run.

If the MPD daemons are not running, the PBS interface to mpirun starts MX's MPD dae-
mons as you on the allocated PBS hosts. The MPD daemons may already have been started
by the administrator or by you. MPD daemons are not started inside a PBS prologue script
since it won't have the path of mpirun that you executed (GM or MX), which would deter-
mine the path to the MPD binary.

6.2.10.1.iii Examples

Example 6-30: Run a single-executable MPICH-MX job with 64 processes spread out across
the PBS-allocated hosts listed in $PBS_NODEFILE:

$PBS_NODEFILE:

pbs-host1

pbs-host2

...

pbs-host64
PBS Professional 12.1 User’s Guide 137

Chapter 6 Multiprocessor Jobs
qsub -l select=64:ncpus=1 -lplace=scatter

[MPICH-MX-HOME]/bin/mpirun -np 64 /path/myprog.x 1200

^D

<job-id>

If the MPD daemons are not running, the PBS interface to mpirun starts MX's MPD
daemons as you on the allocated PBS hosts. The MPD daemons may be already started
by the administrator or by you.

Example 6-31: Run an MPICH-MX job with multiple executables on multiple hosts listed in
the process group file procgrp:

qsub -l select=2:ncpus=1

echo "pbs-host1 1 username /x/y/a.exe arg1 arg2" > procgrp

echo "pbs-host2 1 username /x/x/b.exe arg1 arg2" >> procgrp

[MPICH-MX-HOME]/bin/mpirun -pg procgrp /path/myprog.x 1200

rm -f procgrp

^D

<job-id>

mpirun prints a warning message:

warning: “-pg” is allowed but it is up to user to make sure only PBS hosts
are specified; MPI processes spawned are not guaranteed to be under
PBS-control

The warning is issued because if any of the hosts listed in procgrp are not under the
control of PBS, then the processes on those hosts will not be under the control of PBS.

6.2.10.2 Using MPICH-MX and rsh/ssh with PBS

PBS provides an interface to MPICH-MX’s mpirun using rsh/ssh. If executed inside a
PBS job, this allows for PBS to track all MPICH-MX processes started by rsh/ssh so that
PBS can perform accounting and has complete job control. If executed outside of a PBS job,
it behaves exactly as if standard mpirun had been used.

You use the same mpirun command as you would use outside of PBS.
138 PBS Professional 12.1 User’s Guide

Multiprocessor Jobs Chapter 6
6.2.10.2.i Options

Inside a PBS job script, all of the options to the PBS interface are the same as standard
mpirun except for the following:

-machinefile <file>
The file argument contents are ignored and replaced by the contents of
$PBS_NODEFILE.

-np
If not specified, the number of entries found in the $PBS_NODEFILE is
used. The maximum number of ranks that can be launched is the number of
entries in $PBS_NODEFILE.

-pg
The use of the -pg option, for having multiple executables on multiple
hosts, is allowed but it is up to you to make sure only PBS hosts are speci-
fied in the process group file; MPI processes spawned on non-PBS hosts
are not guaranteed to be under the control of PBS.

6.2.10.2.ii Examples

Example 6-32: Run a single-executable MPICH-MX job with 64 processes spread out across
the PBS-allocated hosts listed in $PBS_NODEFILE:

$PBS_NODEFILE:

pbs-host1

pbs-host2

...

pbs-host64
PBS Professional 12.1 User’s Guide 139

Chapter 6 Multiprocessor Jobs
qsub -l select=64:ncpus=1

mpirun -np 64 /path/myprog.x 1200

^D

<job-id>

Example 6-33: Run an MPICH-MX job with multiple executables on multiple hosts listed in
the process group file procgrp:

qsub -l select=2:ncpus=1

echo "pbs-host1 1 username /x/y/a.exe arg1 arg2" > procgrp

echo "pbs-host2 1 username /x/x/b.exe arg1 arg2" >> procgrp

mpirun -pg procgrp /path/myprog.x

rm -f procgrp

^D

<job-id>

mpirun prints the warning message:

warning: “-pg” is allowed but it is up to user to make sure only PBS hosts
are specified; MPI processes spawned are not guaranteed to be under
PBS-control

The warning is issued because if any of the hosts listed in procgrp are not under the con-
trol of PBS, then the processes on those hosts will not be under the control of PBS.

6.2.10.3 Restrictions

The maximum number of ranks that can be launched under integrated MPICH-MX is the
number of entries in $PBS_NODEFILE.

6.2.11 MPICH2 with PBS

PBS provides an interface to MPICH2’s mpirun. If executed inside a PBS job, this allows
for PBS to track all MPICH2 processes so that PBS can perform accounting and have com-
plete job control. If executed outside of a PBS job, it behaves exactly as if standard
MPICH2's mpirun had been used.

You use the same mpirun command as you would use outside of PBS.
140 PBS Professional 12.1 User’s Guide

Multiprocessor Jobs Chapter 6
When submitting PBS jobs under the PBS interface to MPICH2's mpirun, be sure to explic-
itly specify the actual number of ranks or MPI tasks in the qsub select specification. Other-
wise, jobs will fail to run with "too few entries in the machinefile".

For instance, the following erroneous specification:

#PBS -l select=1:ncpus=1:host=hostA+1:ncpus=2:host=hostB

mpirun -np 3 /tmp/mytask

results in this $PBS_NODEFILE listing:

hostA

hostB

which conflicts with the "-np 3" specification in mpirun as only two MPD daemons are
started.

The correct way is to specify either of the following:

#PBS -l select=1:ncpus=1:host=hostA+2:ncpus=1:host=hostB

#PBS -l select=1:ncpus=1:host=hostA+1:ncpus=2:host=hostB:mpiprocs=2

which causes $PBS_NODEFILE to contain:

hostA

hostB

hostB

and this is consistent with "mpirun -np 3".

6.2.11.1 Options

If executed inside a PBS job script, all of the options to the PBS interface are the same as
MPICH2's mpirun except for the following:

-host, -ghost
For specifying the execution host to run on. Ignored.

-machinefile <file>
The file argument contents are ignored and replaced by the contents of
$PBS_NODEFILE.

-localonly <x>
For specifying the <x> number of processes to run locally. Not supported.
You are advised instead to use the equivalent arguments:

"-np <x> -localonly".
PBS Professional 12.1 User’s Guide 141

Chapter 6 Multiprocessor Jobs
-np
If you do not specify a -np option, then no default value is provided by the
PBS interface to MPICH2. It is up to the standard mpirun to decide what
the reasonable default value should be, which is usually 1. The maximum
number of ranks that can be launched is the number of entries in
$PBS_NODEFILE.

6.2.11.2 MPD Startup and Shutdown

The interface ensures that the MPD daemons are started on each of the hosts listed in
$PBS_NODEFILE. It also ensures that the MPD daemons are shut down at the end of MPI
job execution.
142 PBS Professional 12.1 User’s Guide

Multiprocessor Jobs Chapter 6
6.2.11.3 Examples

Example 6-34: Run a single-executable MPICH2 job with six processes spread out across the
PBS-allocated hosts listed in $PBS_NODEFILE. Only three hosts are available:

$PBS_NODEFILE:

pbs-host1

pbs-host2

pbs-host3

pbs-host1

pbs-host2

pbs-host3

Job.script:

mpirun runs 6 processes, scattered over 3 hosts

listed in $PBS_NODEFILE

mpirun -np 6 /path/myprog.x 1200

Run job script:

qsub -l select=6:ncpus=1 -lplace = scatter job.script

<job-id>

Example 6-35: Run an MPICH2 job with multiple executables on multiple hosts using
$PBS_NODEFILE and mpiexec arguments in mpirun:

$PBS_NODEFILE:

hostA

hostA

hostB

hostB

hostC

hostC

Job script:

#PBS -l select=3:ncpus=2:mpiprocs=2

mpirun -np 2 /tmp/mpitest1 : -np 2 /tmp/mpitest2 : -np 2 /tmp/mpitest3
PBS Professional 12.1 User’s Guide 143

Chapter 6 Multiprocessor Jobs
Run job:

qsub job.script

Example 6-36: Run an MPICH2 job with multiple executables on multiple hosts using
mpirun -configfile option and $PBS_NODEFILE:

$PBS_NODEFILE:

hostA

hostA

hostB

hostB

hostC

hostC

Job script:

#PBS -l select=3:ncpus=2:mpiprocs=2

echo "-np 2 /tmp/mpitest1" > my_config_file

echo "-np 2 /tmp/mpitest2" >> my_config_file

echo "-np 2 /tmp/mpitest3" >> my_config_file

mpirun -configfile my_config_file

rm -f my_config_file

Run job:

qsub job.script

6.2.11.4 Restrictions

The maximum number of ranks that can be launched under integrated MPICH2 is the number
of entries in $PBS_NODEFILE.

6.2.12 MVAPICH with PBS

PBS provides an mpirun interface to the MVAPICH mpirun. When you use the PBS-sup-
plied mpirun, PBS can track all MVAPICH processes, perform accounting, and have com-
plete job control. Your PBS administrator can integrate MVAPICH with PBS so that you can
use the PBS-supplied mpirun in place of the MVAPICH mpirun in your job scripts.
144 PBS Professional 12.1 User’s Guide

Multiprocessor Jobs Chapter 6
MVAPICH allows your jobs to use InfiniBand.

6.2.12.1 Interface to MVAPICH mpirun Command

If executed outside of a PBS job, the PBS-supplied interface to mpirun behaves exactly as if
standard MVAPICH mpirun had been used.

If executed inside a PBS job script, all of the options to the PBS interface are the same as
MVAPICH's mpirun except for the following:

-map
The map option is ignored.

-machinefile <file>
The machinefile option is ignored.

-exclude
The exclude option is ignored.

-np
If you do not specify a -np option, then PBS uses the number of entries
found in $PBS_NODEFILE. The maximum number of ranks that can be
launched is the number of entries in $PBS_NODEFILE.

6.2.12.2 Examples

Example 6-37: Run a single-executable MVAPICH job with six ranks spread out across the
PBS-allocated hosts listed in $PBS_NODEFILE:

$PBS_NODEFILE:

pbs-host1

pbs-host1

pbs-host2

pbs-host2

pbs-host3

pbs-host3

Contents of job.script:

mpirun runs 6 processes mapped one to each line in $PBS_NODEFILE

mpirun -np 6 /path/myprog
PBS Professional 12.1 User’s Guide 145

Chapter 6 Multiprocessor Jobs
Run job script:

qsub -l select=3:ncpus=2:mpiprocs=2 job.script

<job-id>

6.2.12.3 Restrictions

The maximum number of ranks that can be launched under integrated MVAPICH is the num-
ber of entries in $PBS_NODEFILE.

6.2.13 MVAPICH2 with PBS

PBS provides an mpiexec interface to MVAPICH2’s mpiexec. When you use the PBS-
supplied mpiexec, PBS can track all MVAPICH2 processes, perform accounting, and have
complete job control. Your PBS administrator can integrate MVAPICH2 with PBS so that
you can use the PBS-supplied mpirun in place of the MVAPICH2 mpirun in your job
scripts.

MVAPICH2 allows your jobs to use InfiniBand.

6.2.13.1 Interface to MVAPICH2 mpiexec Command

If executed outside of a PBS job, it behaves exactly as if standard MVAPICH2's mpiexec
had been used.

If executed inside a PBS job script, all of the options to the PBS interface are the same as
MVAPICH2's mpiexec except for the following:

-host
The host option is ignored.

-machinefile <file>
The file option is ignored.

-mpdboot
If mpdboot is not called before mpiexec, it is called automatically
before mpiexec runs so that an MPD daemon is started on each host
assigned by PBS.
146 PBS Professional 12.1 User’s Guide

Multiprocessor Jobs Chapter 6
6.2.13.2 MPD Startup and Shutdown

The interface ensures that the MPD daemons are started on each of the hosts listed in
$PBS_NODEFILE. It also ensures that the MPD daemons are shut down at the end of MPI
job execution.

6.2.13.3 Examples

Example 6-38: Run a single-executable MVAPICH2 job with six ranks on hosts listed in
$PBS_NODEFILE:

$PBS_NODEFILE:

pbs-host1

pbs-host1

pbs-host2

pbs-host2

pbs-host3

pbs-host3

Job.script:

mpiexec -np 6 /path/mpiprog

Run job script:

qsub -l select=3:ncpus=2:mpiprocs=2 job.script

<job-id>

Example 6-39: Launch an MVAPICH2 MPI job with multiple executables on multiple hosts
listed in the default file "mpd.hosts". Here, run executables prog1 and prog2 with two
ranks of prog1 on host1, two ranks of prog2 on host2 and two ranks of prog2 on host3, all
specified on the command line:

$PBS_NODEFILE:

pbs-host1

pbs-host1

pbs-host2

pbs-host2

pbs-host3

pbs-host3
PBS Professional 12.1 User’s Guide 147

Chapter 6 Multiprocessor Jobs

Job.script:

mpiexec -n 2 prog1 : -n 2 prog2 : -n 2 prog2

Run job script:

qsub -l select=3:ncpus=2:mpiprocs=2 job.script

<job-id>

Example 6-40: Launch an MVAPICH2 MPI job with multiple executables on multiple hosts
listed in the default file "mpd.hosts". Run executables prog1 and prog2 with two
ranks of prog1 on host1, two ranks of prog2 on host2 and two ranks of prog2 on host3, all
specified using the -configfile option:

$PBS_NODEFILE:

pbs-host1

pbs-host1

pbs-host2

pbs-host2

pbs-host3

pbs-host3

Job.script:

echo "-n 2 -host host1 prog1" > /tmp/jobconf

echo "-n 2 -host host2 prog2" >> /tmp/jobconf

echo "-n 2 -host host3 prog2" >> /tmp/jobconf

mpiexec -configfile /tmp/jobconf

rm /tmp/jobconf

Run job script:

qsub -l select=3:ncpus=2:mpiprocs=2 job.script

<job-id>

6.2.13.4 Restrictions

The maximum number of ranks that can be launched under MVAPICH2 is the number of
entries in $PBS_NODEFILE.
148 PBS Professional 12.1 User’s Guide

Multiprocessor Jobs Chapter 6
6.2.14 Open MPI with PBS

Open MPI can be integrated with PBS on UNIX and Linux so that PBS can track resource
usage, signal processes, and perform accounting, for all job processes. Your PBS administra-
tor can integrate Open MPI with PBS.

6.2.14.1 Using Open MPI with PBS

You can run jobs under PBS using Open MPI without making any changes to your MPI com-
mand line.

6.2.15 Platform MPI with PBS

Platform MPI can be integrated with PBS on UNIX and Linux so that PBS can track resource
usage, signal processes, and perform accounting, for all job processes. Your PBS administra-
tor can integrate Platform MPI with PBS.

6.2.15.1 Using Platform MPI with PBS

You can run jobs under PBS using Platform MPI without making any changes to your MPI
command line.

6.2.15.2 Setting up Your Environment

In order to override the default rsh, set PBS_RSHCOMMAND in your job script:

export PBS_RSHCOMMAND=<rsh_cmd>

6.2.16 SGI MPT with PBS

PBS supplies its own mpiexec to use with SGI MPT on the Altix running supported ver-
sions of ProPack or Performance Suite. When you use the PBS-supplied mpiexec, PBS can
track resource usage, signal processes, and perform accounting, for all job processes. The
PBS mpiexec provides the standard mpiexec interface.

See your PBS administrator to find out whether your system is configured for the PBS
mpiexec.
PBS Professional 12.1 User’s Guide 149

Chapter 6 Multiprocessor Jobs
6.2.16.1 Using SGI MPT with PBS

You can launch an MPI job on a single Altix, or across multiple Altixes. For MPI jobs across
multiple Altixes, PBS will manage the multi-host jobs. For example, if you have two Altixes
named Alt1 and Alt2, and want to run two applications called mympi1 and mympi2 on them,
you can put this in your job script:

mpiexec -host Alt1 -n 4 mympi1 : -host Alt2 -n 8 mympi2

PBS will manage and track the job’s processes. When the job is finished, PBS will clean up
after it.

You can run MPI jobs in the placement sets chosen by PBS.

6.2.16.2 Prerequisites

In order to use MPI within a PBS job with Performance Suite, you may need to add the fol-
lowing in your job script before you call MPI:

module load mpt

6.2.16.3 Using Cpusets

PBS will run the MPI tasks in the cpusets it manages.

Jobs will share cpusets if the jobs request sharing and the vnodes’ sharing attribute is not set
to force_excl. Jobs can share the memory on a nodeboard if they have a CPU from that
nodeboard. To fit as many small jobs as possible onto vnodes that already have shared jobs on
them, request sharing in the job resource requests.

The alt_id job attribute has the form cpuset=<name>, where <name> is the name of the
cpuset, which is the $PBS_JOBID.

To verify how many CPUs are included in a cpuset created by PBS, use:

> $ cpuset -d <set name> | egrep cpus

This will work either inside or outside a job.

For details on shared versus exclusive use of vnodes, see section 5.7.1.2, “Specifying Shared
or Exclusive Use of Vnodes”, on page 91, and for a description of how the vnode sharing
attribute interacts with a job’s resource request, see “sharing” on page 370 of the PBS Profes-
sional Reference Guide.
150 PBS Professional 12.1 User’s Guide

Multiprocessor Jobs Chapter 6
6.2.16.4 Fitting Jobs onto Nodeboards

PBS will try to put a job that fits in a single nodeboard on just one nodeboard. However, if the
only CPUs available are on separate nodeboards, and those vnodes are not allocated exclu-
sively to existing jobs, and the job can share a vnode, then the job is run on the separate node-
boards.

6.2.16.5 Checkpointing and Suspending Jobs

Jobs are suspended on the Altix using the PBS suspend feature. If a job is suspended, its pro-
cesses are moved to the global cpuset. When the job is restarted, they are restored.

Jobs are checkpointed on the Altix using application-level checkpointing. There is no OS-
level checkpoint.

Suspended or checkpointed jobs will resume on the original nodeboards.

6.2.16.6 Specifying Array Name

You can specify the name of the array to use via the PBS_MPI_SGIARRAY environment
variable.

6.2.16.7 Using CSA

PBS support for CSA on SGI systems is no longer available. The CSA functionality for SGI
systems has been removed from PBS.

6.3 Using PVM with PBS

You use the pvmexec command to execute a Parallel Virtual Machine (PVM) program.
PVM is not integrated with PBS; PBS is limited to monitoring, controlling, and accounting
for job processes only on the primary vnode.

6.3.1 Arguments to pvmexec Command

The pvmexec command expects a hostfile argument for the list of hosts on which to
spawn the parallel job.
PBS Professional 12.1 User’s Guide 151

Chapter 6 Multiprocessor Jobs
6.3.2 Using PVM Daemons

To start the PVM daemons on the hosts listed in $PBS_NODEFILE:

1. Start the PVM console on the first host in the list

2. Print the hosts to the standard output file named jobname.o<PBS job ID>:

echo conf | pvm $PBS_NODEFILE

To quit the PVM console but leave the PVM daemons running:

quit

To stop the PVM daemons, restart the PVM console, and quit:

echo halt | pvm

6.3.3 Submitting a PVM Job

To submit a PVM job to PBS, use the following:

qsub <job script>

6.3.4 Examples

Example 6-41: To submit a PVM job to PBS, use the following:

qsub your_pvm_job

Here is an example script for your_pvm_job:

#PBS -N pvmjob

#PBS -V

cd $PBS_O_WORKDIR

echo conf | pvm $PBS_NODEFILE

echo quit | pvm

./my_pvm_program

echo halt | pvm

Example 6-42: Sample PBS script for a PVM job:

#PBS -N pvmjob

#

pvmexec a.out -inputfile data_in
152 PBS Professional 12.1 User’s Guide

Multiprocessor Jobs Chapter 6
6.4 Using OpenMP with PBS

PBS Professional supports OpenMP applications by setting the OMP_NUM_THREADS
variable in the job’s environment, based on the resource request of the job. The OpenMP run-
time picks up the value of OMP_NUM_THREADS and creates threads appropriately.

MoM sets the value of OMP_NUM_THREADS based on the first chunk of the select
statement. If you request ompthreads in the first chunk, MoM sets the environment variable
to the value of ompthreads. If you do not request ompthreads in the first chunk, then
OMP_NUM_THREADS is set to the value of the ncpus resource of that chunk. If you do
not request either ncpus or ompthreads for the first chunk of the select statement, then
OMP_NUM_THREADS is set to 1.

You cannot directly set the value of the OMP_NUM_THREADS environment variable;
MoM will override any setting you attempt.

See “Built-in Resources” on page 299 of the PBS Professional Reference Guide for a defini-
tion of the ompthreads resource.

Example 6-43: Submit an OpenMP job as a single chunk, for a two-CPU, two-thread job
requiring 10gb of memory:

qsub -l select=1:ncpus=2:mem=10gb

Example 6-44: Run an MPI application with 64 MPI processes, and one thread per process:

#PBS -l select=64:ncpus=1

mpiexec -n 64 ./a.out

Example 6-45: Run an MPI application with 64 MPI processes, and four OpenMP threads per
process:

#PBS -l select=64:ncpus=4

mpiexec -n 64 omplace -nt 4 ./a.out

or

#PBS -l select=64:ncpus=4:ompthreads=4

mpiexec -n 64 omplace -nt 4 ./a.out
PBS Professional 12.1 User’s Guide 153

Chapter 6 Multiprocessor Jobs
6.4.1 Running Fewer Threads than CPUs

You might be running an OpenMP application on a host and wish to run fewer threads than
the number of CPUs requested. This might be because the threads need exclusive access to
shared resources in a multi-core processor system, such as to a cache shared between cores, or
to the memory shared between cores.

Example 6-46: You want one chunk, with 16 CPUs and eight threads:

qsub -l select=1:ncpus=16:ompthreads=8

6.4.2 Running More Threads than CPUs

You might be running an OpenMP application on a host and wish to run more threads than the
number of CPUs requested, perhaps because each thread is I/O bound.

Example 6-47: You want one chunk, with eight CPUs and 16 threads:

qsub -l select=1:ncpus=8:ompthreads=16

6.4.3 Caveats for Using OpenMP with PBS

Make sure that you request the correct number of MPI ranks for your job, so that the PBS
node file contains the correct number of entries. See section 6.1.3, “Specifying Number of
MPI Processes Per Chunk”, on page 107.

6.5 Hybrid MPI-OpenMP Jobs

For jobs that are both MPI and multi-threaded, the number of threads per chunk, for all
chunks, is set to the number of threads requested (explicitly or implicitly) in the first chunk,
except for MPIs that have been integrated with the PBS TM API.

For MPIs that are integrated with the PBS TM interface, (LAM MPI and Open MPI), you can
specify the number of threads separately for each chunk, by specifying the ompthreads
resource separately for each chunk.

For most MPIs, the OMP_NUM_THREADS and NCPUS environment variables default
to the number of ncpus requested for the first chunk.

Should you have a job that is both MPI and multi-threaded, you can request one chunk for
each MPI process, or set mpiprocs to the number of MPI processes you want on each chunk.
See section 6.1.3, “Specifying Number of MPI Processes Per Chunk”, on page 107.
154 PBS Professional 12.1 User’s Guide

Multiprocessor Jobs Chapter 6
6.5.1 Examples

Example 6-48: To request four chunks, each with one MPI process, two CPUs and two
threads:

qsub -l select=4:ncpus=2

or

qsub -l select=4:ncpus=2:ompthreads=2

Example 6-49: To request four chunks, each with two CPUs and four threads:

qsub -l select=4:ncpus=2:ompthreads=4

Example 6-50: To request 16 MPI processes each with two threads on machines with two
processors:

qsub -l select=16:ncpus=2

Example 6-51: To request two chunks, each with eight CPUs and eight MPI tasks and four
threads:

qsub -l select=2:ncpus=8:mpiprocs=8:ompthreads=4

Example 6-52: For the following:

qsub -l select=4:ncpus=2

This request is satisfied by four CPUs from VnodeA, two from VnodeB and two from
VnodeC, so the following is written to $PBS_NODEFILE:

VnodeA

VnodeA

VnodeB

VnodeC

The OpenMP environment variables are set, for the four PBS tasks corresponding to the
four MPI processes, as follows:

• For PBS task #1 on VnodeA: OMP_NUM_THREADS=2 NCPUS=2

• For PBS task #2 on VnodeA: OMP_NUM_THREADS=2 NCPUS=2

• For PBS task #3 on VnodeB: OMP_NUM_THREADS=2 NCPUS=2
PBS Professional 12.1 User’s Guide 155

Chapter 6 Multiprocessor Jobs
• For PBS task #4 on VnodeC: OMP_NUM_THREADS=2 NCPUS=2

Example 6-53: For the following:

qsub -l select=3:ncpus=2:mpiprocs=2:ompthreads=1

This is satisfied by two CPUs from each of three vnodes (VnodeA, VnodeB, and Vno-
deC), so the following is written to $PBS_NODEFILE:

VnodeA

VnodeA

VnodeB

VnodeB

VnodeC

VnodeC

The OpenMP environment variables are set, for the six PBS tasks corresponding to the six
MPI processes, as follows:

• For PBS task #1 on VnodeA: OMP_NUM_THREADS=1 NCPUS=1

• For PBS task #2 on VnodeA: OMP_NUM_THREADS=1 NCPUS=1

• For PBS task #3 on VnodeB: OMP_NUM_THREADS=1 NCPUS=1

• For PBS task #4 on VnodeB: OMP_NUM_THREADS=1 NCPUS=1

• For PBS task #5 on VnodeC: OMP_NUM_THREADS=1 NCPUS=1

• For PBS task #6 on VnodeC: OMP_NUM_THREADS=1 NCPUS=1

Example 6-54: To run two threads on each of N chunks, each running a process, all on the
same Altix:

qsub -l select=N:ncpus=2 -l place=pack

This starts N processes on a single host, with two OpenMP threads per process, because
OMP_NUM_THREADS=2.
156 PBS Professional 12.1 User’s Guide

Chapter 7
Controlling How Your Job Runs

7.1 Using Job Exit Status

PBS can use the exit status of your job as input to the epilogue, and to determine whether to
run a dependent job. If you are running under UNIX/Linux, make sure that your job’s exit
status is captured correctly; see section 2.4.2.4, “Capture Correct Job Exit Status”, on page 14.

Job exit codes are listed in section 12.9, "Job Exit Codes", on page 856 of the PBS Profes-
sional Administrator’s Guide.

The exit status of a job array is determined by the status of each of its completed subjobs, and
is only available when all valid subjobs have completed. The individual exit status of a com-
pleted subjob is passed to the epilogue, and is available in the ‘E’ accounting log record of
that subjob. See “Job Array Exit Status” on page 212.

7.1.1 Caveats for Exit Status

Normally, qsub exits with the exit status for a blocking job, but if you submit a job that is
both blocking and interactive, PBS does not return the job’s exit status. See section 7.7,
“Making qsub Wait Until Job Ends”, on page 173.

For a blocking job, the exit status is returned before staging finishes. See section 7.7.2,
“Caveats for Blocking Jobs”, on page 174.
PBS Professional 12.1 User’s Guide 157

Chapter 7 Controlling How Your Job Runs
7.2 Using Job Dependencies

PBS allows you to specify dependencies between two or more jobs. Dependencies are useful
for a variety of tasks, such as:

• Specifying the order in which jobs in a set should execute

• Requesting a job run only if an error occurs in another job

• Holding jobs until a particular job starts or completes execution

There is no limit on the number of dependencies per job.

7.2.1 Syntax for Job Dependencies

Use the “-W depend=dependency_list” option to qsub to define dependencies
between jobs. The dependency_list has the format:

type:arg_list[,type:arg_list ...]

where except for the on type, the arg_list is one or more PBS job IDs in the form:

jobid[:jobid ...]

These are the available dependency types:

after:arg_list
This job may start only after all jobs in arg_list have started execution.

afterok:arg_list
This job may start only after all jobs in arg_list have terminated with no
errors.

afternotok:arg_list
This job may start only after all jobs in arg_list have terminated with errors.

afterany:arg_list
This job may start after all jobs in arg_list have finished execution, with or
without errors.

before:arg_list
Jobs in arg_list may start only after specified jobs have begun execution.
You must submit jobs that will run before other jobs with a type of on.

beforeok:arg_list
Jobs in arg_list may start only after this job terminates without errors.

beforenotok:arg_list
If this job terminates execution with errors, the jobs in arg_list may begin.
158 PBS Professional 12.1 User’s Guide

Controlling How Your Job Runs Chapter 7
beforeany:arg_list
Jobs in arg_list may start only after specified jobs terminate execution, with
or without errors. Requires use of on dependency for jobs that will run
before other jobs.

on:count
This job may start only after count dependencies on other jobs have been
satisfied. This type is used in conjunction with one of the before types.
count is an integer greater than 0.

The depend job attribute controls job dependencies. You can set it using the qsub command
line or a PBS directive:

qsub -W depend=...

#PBS depend=...

7.2.2 Job Dependency Examples

Example 7-1: You have three jobs, job1, job2, and job3, and you want job3 to start after job1
and job2 have ended:

qsub job1

16394.jupiter

qsub job2

16395.jupiter

qsub -W depend=afterany:16394:16395 job3

16396.jupiter

Example 7-2: You want job2 to start only if job1 ends with no errors:

qsub job1

16397.jupiter

qsub -W depend=afterok:16397 job2

16396.jupiter

Example 7-3: job1 should run before job2 and job3. To use the beforeany dependency, you
must use the on dependency:

qsub -W depend=on:2 job1

16397.jupiter

qsub -W depend=beforeany:16397 job2

16398.jupiter

qsub -W depend=beforeany:16397 job3

16399.jupiter
PBS Professional 12.1 User’s Guide 159

Chapter 7 Controlling How Your Job Runs
7.2.3 Job Array Dependencies

Job dependencies are supported:

• Between jobs and jobs

• Between job arrays and job arrays

• Between job arrays and jobs

• Between jobs and job arrays

Job dependencies are not supported for subjobs or ranges of subjobs.

7.2.4 Using xpbs for Job Dependencies

You can use xpbs to specify job dependencies. In the Submit Job window, in the other
options section (far left, center of window), click on one of the three dependency buttons:
“after depend”, “before depend”, or “concurrency”. Any of these launches a “Dependency”
window in where you can set up dependencies.

7.2.5 Caveats and Advice for Job Dependencies

7.2.5.1 Correct Exit Status Required

Under UNIX/Linux, make sure that job exit status is captured correctly; see section 7.1,
“Using Job Exit Status”, on page 157.

7.2.5.2 Permission Required for Dependencies

To use the before types, you must have permission to alter the jobs in arg_list. Otherwise, the
dependency is rejected and the new job is aborted.

7.2.5.3 Warning About Job History

Enabling job history changes the behavior of dependent jobs. If a job j1 depends on a finished
job j2 for which PBS is maintaining history, PBS puts j1 into the held state. If job j1 depends
on a finished job j3 that has been purged from the historical records, PBS rejects j1 as if the
job no longer exists.

7.2.5.4 Error Reporting

PBS checks for errors in the existence, state, or condition of the job after accepting the job. If
there is an error, PBS sends you mail about the error and deletes the job.
160 PBS Professional 12.1 User’s Guide

Controlling How Your Job Runs Chapter 7
7.3 Adjusting Job Running Time

This feature was added in PBS Professional 12.0.

7.3.1 Shrink-to-fit Jobs

PBS allows you to submit a job whose running time can be adjusted to fit into an available
scheduling slot. The job’s minimum and maximum running time are specified in the
min_walltime and max_walltime resources. PBS chooses the actual walltime. Any job that
requests min_walltime is a shrink-to-fit job.

7.3.1.1 Requirements for a Shrink-to-fit Job

A job must have a value for min_walltime to be a shrink-to-fit job. Shrink-to-fit jobs are not
required to request max_walltime, but it is an error to request max_walltime and not
min_walltime.

Jobs that do not have values for min_walltime are not shrink-to-fit jobs, and you can specify
their walltime.

7.3.1.2 Comparison Between Shrink-to-fit and Non-shrink-to-
fit Jobs

The only difference between a shrink-to-fit and a non-shrink-to-fit job is how the job’s wall-

time is treated. PBS sets the walltime when it runs the job. Any walltime value that exists
before the job runs is ignored.

7.3.2 Using Shrink-to-fit Jobs

If you have jobs that can run for less than the expected time needed and still make useful
progress, you can make them shrink-to-fit jobs in order to maximize utilization.

You can use shrink-to-fit jobs for the following:

• Jobs that are internally checkpointed. This includes jobs which are part of a larger effort,
where a job does as much work as it can before it is killed, and the next job in that effort
takes up where the previous job left off.

• Jobs using periodic PBS checkpointing

• Jobs whose real running time might be much less than the expected time

• When you have dedicated time for system maintenance, and you want to take advantage
of time slots right up until shutdown, you can run speculative shrink-to-fit jobs if you can
PBS Professional 12.1 User’s Guide 161

Chapter 7 Controlling How Your Job Runs
risk having a job killed before it finishes. Similarly, speculative jobs can take advantage
of the time just before a reservation starts

• Any job where you do not mind running the job as a speculative attempt to finish some
work

7.3.3 Running Time of a Shrink-to-fit Job

7.3.3.1 Setting Running Time Range for Shrink-to-fit Jobs

It is only required that the job request min_walltime to be a shrink-to-fit job. Requesting
max_walltime without requesting min_walltime is an error.

You can set the job’s running time range by requesting min_walltime and max_walltime, for
example:

qsub -l min_walltime=<min walltime>, max_walltime=<max walltime> <job script>

7.3.3.2 Setting walltime for Shrink-to-fit Jobs

For a shrink-to-fit job, PBS sets the walltime resource based on the values of min_walltime
and max_walltime, regardless of whether walltime is specified for the job.

PBS examines each shrink-to-fit job when it gets to it, and looks for a time slot whose length
is between the job’s min_walltime and max_walltime. If the job can fit somewhere, PBS
sets the job’s walltime to a duration that fits the time slot, and runs the job. The chosen value
for walltime is visible in the job’s Resource_List.walltime attribute. Any existing walltime
value, regardless of where it comes from, e.g. previous execution, is reset to the new calcu-
lated running time.

If a shrink-to-fit job is run more than once, PBS recalculates the job’s running time to fit an
available time slot that is between min_walltime and max_walltime, and resets the job’s
walltime, each time the job is run.

For a multi-vnode job, PBS chooses a walltime that works for all of the chunks required by
the job, and places job chunks according to the placement specification.

7.3.4 Modifying Shrink-to-fit and Non-shrink-to-fit Jobs

7.3.4.1 Modifying min_walltime and max_walltime

You can change min_walltime and/or max_walltime for a shrink-to-fit job by using the
qalter command. Any changes take effect after the current scheduling cycle. Changes
affect only queued jobs; running jobs are unaffected unless they are rerun.
162 PBS Professional 12.1 User’s Guide

Controlling How Your Job Runs Chapter 7
7.3.4.1.i Making Non-shrink-to-fit Jobs into Shrink-to-fit Jobs

You can convert a normal non-shrink-to-fit job into a shrink-to-fit job using the qalter
command to set values for min_walltime and max_walltime.

Any changes take effect after the current scheduling cycle. Changes affect only queued jobs;
running jobs are unaffected unless they are rerun.

7.3.4.1.ii Making Shrink-to-fit Jobs into Non-shrink-to-fit Jobs

To make a shrink-to-fit job into a normal, non-shrink-to-fit job, use the qalter command to
do the following:

• Set the job’s walltime to the value for max_walltime

• Unset min_walltime

• Unset max_walltime

7.3.5 Viewing Running Time for a Job

7.3.5.1 Viewing min_walltime and max_walltime

You can use qstat -f to view the values of min_walltime and max_walltime. For exam-
ple:

% qsub -lmin_walltime=01:00:15, max_walltime=03:30:00 job.sh

<job-id>

% qstat -f <job-id>

...

Resource_List.min_walltime=01:00:15

Resource_List.max_walltime=03:30:00

You can use tracejob to display max_walltime and min_walltime as part of the job's
resource list. For example:

12/16/2011 14:28:55 A user=pbsadmin group=Users
project=_pbs_project_default

…

Resource_List.max_walltime=10:00:00

Resource_List.min_walltime=00:00:10
PBS Professional 12.1 User’s Guide 163

Chapter 7 Controlling How Your Job Runs
7.3.5.2 Viewing walltime for a Shrink-to-fit Job

PBS sets a job’s walltime only when the job runs. While the job is running, you can see its
walltime via qstat -f. While the job is not running, you cannot see its real walltime; it
may have a value set for walltime, but this value is ignored.

You can see the walltime value for a finished shrink-to-fit job if you are preserving job his-
tory. See section 12.15, “Managing Job History”, on page 870.

7.3.6 Lifecycle of a Shrink-to-fit Job

7.3.6.1 Execution of Shrink-to-fit Jobs

Shrink-to-fit jobs are started just like non-shrink-to-fit jobs.

7.3.6.2 Termination of Shrink-to-fit Jobs

When a shrink-to-fit job exceeds the walltime PBS has set for it, it is killed by PBS exactly as
a non-shrink-to-fit job is killed when it exceeds its walltime.

7.3.7 The min_walltime and max_walltime Resources

max_walltime
Maximum walltime allowed for a shrink-to-fit job. Job’s actual walltime is
between max_walltime and min_walltime. PBS sets walltime for a
shrink-to-fit job. If this resource is specified, min_walltime must also be
specified. Must be greater than or equal to min_walltime. Cannot be used
for resources_min or resources_max. Cannot be set on job arrays or
reservations. If not specified, PBS uses 5 years as the maximum time slot.
Can be requested only outside of a select statement. Non-consumable.
Default: None. Type: duration. Python type: pbs.duration

min_walltime
Minimum walltime allowed for a shrink-to-fit job. When this resource is
specified, job is a shrink-to-fit job. If this attribute is set, PBS sets the job’s
walltime. Job’s actual walltime is between max_walltime and
min_walltime. Must be less than or equal to max_walltime. Cannot be
used for resources_min or resources_max. Cannot be set on job arrays
or reservations. Can be requested only outside of a select statement. Non-
consumable. Default: None. Type: duration. Python type: pbs.duration
164 PBS Professional 12.1 User’s Guide

Controlling How Your Job Runs Chapter 7
7.3.8 Caveats and Restrictions for Shrink-to-fit Jobs

It is erroneous to specify max_walltime for a job without specifying min_walltime. If
attempted via qsub or qalter, the following error is printed:

'Can not have “max_walltime” without “min_walltime”'

It is erroneous to specify a min_walltime that is greater than max_walltime. If attempted via
qsub or qalter, the following error is printed:

'“min_walltime” can not be greater than “max_walltime”'

Job arrays cannot be shrink-to-fit. You cannot have a shrink-to-fit job array. It is erroneous to
specify a min_walltime or max_walltime for a job array. If attempted via qsub or qalter,
the following error is printed:

'”min_walltime” and “max_walltime” are not valid resources for a job array'

Reservations cannot be shrink-to-fit. You cannot have a shrink-to-fit reservation. It is errone-
ous to set min_walltime or max_walltime for a reservation. If attempted via pbs_rsub,
the following error is printed:

'”min_walltime” and “max_walltime” are not valid resources for
reservation.'

It is erroneous to set resources_max or resources_min for min_walltime and
max_walltime. If attempted, the following error message is displayed, whichever is appro-
priate:

“Resource limits can not be set for min_walltime”

“Resource limits can not be set for max_walltime”

7.4 Using Checkpointing

7.4.1 Prerequisites for Checkpointing

A job is checkpointable if it has not been marked as non-checkpointable and any of the fol-
lowing is true:

• Its application supports checkpointing and your administrator has set up checkpoint
scripts

• There is a third-party checkpointing application available

• The OS supports checkpointing
PBS Professional 12.1 User’s Guide 165

Chapter 7 Controlling How Your Job Runs
7.4.2 Minimum Checkpoint Interval

The execution queue in which the job resides controls the minimum interval at which a job
can be checkpointed. The interval is specified in CPU minutes or walltime minutes. The
same value is used for both, so for example if the minimum interval is specified as 12, then a
job using the queue’s interval for CPU time is checkpointed every 12 minutes of CPU time,
and a job using the queue’s interval for walltime is checkpointed every 12 minutes of wall-
time.

7.4.3 Syntax for Specifying Checkpoint Interval

Use the “-c checkpoint-spec” option to qsub to specify the interval, in CPU minutes,
or in walltime minutes, at which the job will be checkpointed.

The checkpoint-spec argument is specified as:

c
Job is checkpointed at the interval, measured in CPU time, set on the execu-
tion queue in which the job resides.

c=<minutes of CPU time>
Job is checkpointed at intervals of the specified number of minutes of CPU
time used by the job. This value must be greater than zero. If the interval
specified is less than that set on the execution queue in which the job
resides, the queue’s interval is used.

Format: Integer

w
Job is checkpointed at the interval, measured in walltime, set on the execu-
tion queue in which the job resides.

w=<minutes of walltime>
Checkpointing is to be performed at intervals of the specified number of
minutes of walltime used by the job. This value must be greater than zero.
If the interval specified is less than that set on the execution queue in which
the job resides, the queue’s interval is used.

Format: Integer

n
Job is not checkpointed.

s
Job is checkpointed only when the PBS server is shut down.

u
Checkpointing is unspecified, and defaults to the same behavior as “s”.
166 PBS Professional 12.1 User’s Guide

Controlling How Your Job Runs Chapter 7
The Checkpoint job attribute controls the job’s checkpoint interval. You can set it using the
qsub command line or a PBS directive:

Use qsub to specify that the job should use the execution queue’s checkpoint interval:

qsub -c c my_job

Use a directive to checkpoint the job every 10 minutes of CPU time:

#PBS -c c=10

7.4.4 Using Checkpointing for Preempting or Holding
Jobs

Your site may need to preempt jobs while they are running, or you may want to be able to
place a hold your job while it runs. To allow either of these, make your job checkpointable.
This means that you should not mark it as non-checkpointable (do not use qsub -c n),
your application must be checkpointable or there is a third-party checkpointing application,
and your administrator must supply a checkpoint script to be run by the MoM where the job
runs.

You can use application-level checkpointing when your job is preempted or you place a hold
on it to save the partial results. When your checkpointed job is restarted, your job script can
find that the job was checkpointed, and can start from the checkpoint file instead of starting
from scratch.

If you try to hold a running job that is not checkpointable (either it is marked as non-check-
pointable or the script is missing or returns failure), the job continues to run with its
Hold_Types attribute set to h. See section 7.5, “Holding and Releasing Jobs”, on page 167.

7.4.5 Caveats and Restrictions for Checkpointing

• Checkpointing is not supported for job arrays.

• If you do not specify qsub -c checkpoint-spec, it is unspecified, and defaults to
the same as “s”.

7.5 Holding and Releasing Jobs

You can place a hold on your job to do the following:

• A queued job remains queued until you release the hold; see section 7.5.3, “Holding a Job
Before Execution”, on page 169

• A running job stops running but can resume where it left off; see section 7.5.4.1, “Check-
PBS Professional 12.1 User’s Guide 167

Chapter 7 Controlling How Your Job Runs
pointing and Requeueing the Job”, on page 169

• A running job continues to run but is held if it is requeued; see section 7.5.4.2, “Setting a
Running Job’s Hold Type”, on page 169

You hold a job using the qhold command; see “qhold” on page 149 of the PBS Professional
Reference Guide.

You can release a held queued job to make it eligible to be scheduled to run, and you can
release a hold on a running job. You release a hold on your job using the qrls command; see
“qrls” on page 178 of the PBS Professional Reference Guide.

7.5.1 Types of Holds

There are three types of holds: user, operator, and system. You can place a user hold upon
any job that you own. An Operator can place a user or operator hold on any job. A Manager
can place any hold on any job. The usage syntax of the qhold command is the following:

qhold [-h hold_list] job_identifier ...

For a job array the job_identifier must be enclosed in double quotes.

The hold_list specifies the types of holds to be placed on the job. The hold_list argument is a
string consisting of one or more of the letters u, p, o, or s in any combination, or the letter n.
The following table shows the hold type associated with each letter:

If no -h option is specified, PBS applies a user hold to the jobs listed in the job_identifier list.

If a job in the job_identifier list is in the queued, held, or waiting states, the only change is that
the hold type is added to the job’s other holds. If the job is queued or waiting in an execution
queue, the job is also put in the held state.

Table 7-1: Hold Types

Letter Meaning

n none: no hold type specified

u user: job owner can set and release this hold type

p password: set if job fails due to a bad password; can be unset by job owner

o operator: requires Operator privilege to set or unset

s system: requires Manager privilege to unset
168 PBS Professional 12.1 User’s Guide

Controlling How Your Job Runs Chapter 7
7.5.2 Requirements for Holding or Releasing a Job

The user executing the qhold or qrls command must have the necessary privilege to apply
a hold or release a hold. The same rules apply for releasing a hold and for for setting a hold.

7.5.3 Holding a Job Before Execution

Normally, PBS runs your job as soon as an appropriate slot opens up. However, you can tell
PBS that the job is ineligible to run and should remain queued. Use the “-h” option to qsub
to apply a user hold to the job when you submit it. PBS accepts the job and places it in the
held state. The job remains held and ineligible to run until the hold is released.

The Hold_Types job attribute controls the job’s holding behavior; set it via qsub or a direc-
tive:

qsub -h my_job

#PBS -h

7.5.4 Holding a Job During Execution

7.5.4.1 Checkpointing and Requeueing the Job

If your job is checkpointable, you can stop its execution by holding it. In this case the follow-
ing happens:

• The job is checkpointed

• The resources assigned to the job are released

• The job is put back in the execution queue in the Held state

See section 7.4.1, “Prerequisites for Checkpointing”, on page 165.

To hold your job, use the qhold command:

qsub -h my_job

7.5.4.2 Setting a Running Job’s Hold Type

If your job is not checkpointable, qhold merely sets the job’s Hold_Types attribute. This
has no effect unless the job is requeued with the qrerun command. In that case the job
remains queued and ineligible to run until you release the hold.
PBS Professional 12.1 User’s Guide 169

Chapter 7 Controlling How Your Job Runs
7.5.5 Releasing a Job

You can release one or more holds on a job by using the qrls command.

The usage syntax of the qrls command is the following:

qrls [-h hold_list] job_identifier ...

For job arrays, the job_identifier must be enclosed in double quotes.

If you try to release a hold on a job which is not held, the qrls command is ignored. If you
use the qrls command to release a hold on a job that had been previously running and was
checkpointed, the hold is released and the job is returned to the queued (Q) state, and the job
becomes eligible to be scheduled to run when resources come available.

The qrls command does not run the job; it simply releases the hold and makes the job eligi-
ble to be run the next time the scheduler selects it.

7.5.6 Caveats and Restrictions for Holding and Releasing
Jobs

• The qhold command can be used on job arrays, but not on subjobs or ranges of subjobs.
On job arrays, the qhold command can be applied only in the ‘Q’, ‘B’ or ‘W’ states.
This will put the job array in the ‘H’, held, state. If any subjobs are running, they will run
to completion. Job arrays cannot be moved in the ‘H’ state if any subjobs are running.

• Checkpointing is not supported for job arrays. Even on systems that support checkpoint-
ing, no subjobs will be checkpointed; they will run to completion.

• To hold a running job and stop its execution, the job must be checkpointable. See section
7.4.1, “Prerequisites for Checkpointing”, on page 165.

• The qrls command can only be used with job array objects, not with subjobs or ranges.
The job array will be returned to its pre-hold state, which can be either ‘Q’, ‘B’, or ‘W’.

• The qhold command can only be used with job array objects, not with subjobs or
ranges. A hold can be applied to a job array only from the ‘Q’, ‘B’ or ‘W’ states. This
will put the job array in the ‘H’, held, state. If any subjobs are running, they will run to
completion. No queued subjobs will be started while in the ‘H’ state.

7.5.7 Why is Your Job Held?

Your job may be held for any of the following reasons:

• Provisioning fails due to invalid provisioning request or to internal system error (“s”)

• After provisioning, the AOE reported by the vnode does not match the AOE requested by
170 PBS Professional 12.1 User’s Guide

Controlling How Your Job Runs Chapter 7
the job (“s”)

• The job was held by a PBS Manager or Operator (“o”)

• The job was checkpointed and requeued (“s”)

• Your job depends on a finished job for which PBS is maintaining history (‘s”)

• The job’s password is invalid (“p”)

7.5.8 Using xpbs to Hold or Release Jobs

To hold (or release) a job using xpbs, first select the job(s) of interest, then click the hold (or
release) button.

7.5.9 Examples of Holding and Releasing Jobs

The following examples illustrate how to use both the qhold and qrls commands. Notice
that the state (“S”) column shows how the state of the job changes with the use of these two
commands.

qstat -a 54

 Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ------ ----- ------- ---- --- --- --- ---- - ----

54.south barry workq engine -- -- 1 -- 0:20 Q --

qhold 54

qstat -a 54

 Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ------ ----- ------- ---- --- --- --- ---- - ----

54.south barry workq engine -- -- 1 -- 0:20 H --
PBS Professional 12.1 User’s Guide 171

Chapter 7 Controlling How Your Job Runs
qrls -h u 54

qstat -a 54

 Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ------ ----- ------- ---- --- --- --- ---- - ----

54.south barry workq engine -- -- 1 -- 0:20 Q --

7.6 Allowing Your Job to be Re-run

You can specify whether or not your job is eligible to be re-run if for some reason the job is
terminated before it finishes. Use the “-r” option to qsub to specify whether the job is
rerunnable. The argument to this option is “y”, meaning that the job can be re-run, or “n”,
meaning that it cannot. If you do not specify whether or not your job is rerunnable, it is rerun-
nable.

If your running your job more than once would cause a problem, mark your job as non-rerun-
nable. Otherwise, leave it as rerunnable . The purpose of marking a job as non-rerunnable is
to prevent it from starting more than once.

If a job that is marked non-rerunnable has an error during startup, before it begins execution,
that job is requeued for another attempt.

The Rerunable job attribute controls whether the job is rerunnable; you can set it via qsub
or a PBS directive:

qsub -r n my_job

#PBS -r n

The following table lists the circumstances where the job’s Rerunable attribute makes a dif-
ference or does not:

Table 7-2: When does Rerunable Attribute Matter?

Circumstance Rerunnable Not Rerunnable

Job fails upon startup, before running Job is requeued Job is requeued

Job is running on multiple hosts, and
one host goes down

Job is requeued Job is deleted
172 PBS Professional 12.1 User’s Guide

Controlling How Your Job Runs Chapter 7
7.6.1 Caveats and Restrictions for Marking Jobs as
Rerunnable

• Interactive jobs are not rerunnable.

• Job arrays are required to be rerunnable. PBS will not accept a job array that is marked as
not rerunnable. You can submit a job array without specifying whether it is rerunnable,
and PBS will automatically mark it as rerunnable.

7.7 Making qsub Wait Until Job Ends

Normally, when you submit a job, the qsub command exits after returning the ID of the new
job. You can use the “-W block=true” option to qsub to specify that you want qsub to
“block”, meaning wait for the job to complete and report the exit value of the job.

If your job is successfully submitted, qsub blocks until the job terminates or an error occurs.
If job submission fails, no special processing takes place.

If the job runs to completion, qsub exits with the exit status of the job. For job arrays, block-
ing qsub waits until the entire job array is complete, then returns the exit status of the job
array.

Job is scheduled to run on multiple
hosts, and did not start on at least one
host

Job is requeued Job is requeued

Server is shut down with a delay Job is requeued Job finishes

Server is shut down immediately Job is requeued Job is deleted

Job requests provisioning and provi-
sioning script fails

Job is requeued Job is requeued

Job is running on multiple hosts and
one host becomes busy due to console
activity

Job is requeued Job is deleted

Higher-priority job needs resources Job is requeued Job continues to run

Table 7-2: When does Rerunable Attribute Matter?

Circumstance Rerunnable Not Rerunnable
PBS Professional 12.1 User’s Guide 173

Chapter 7 Controlling How Your Job Runs
The block job attribute controls blocking. Set it either via qsub or a PBS directive:

qsub -W block=true

#PBS block=true

7.7.1 Signal Handling and Error Processing for Blocking
Jobs

Signals SIGQUIT and SIGKILL are not trapped, and immediately terminate the qsub pro-
cess, leaving the associated job either running or queued.

If qsub receives one of the signals SIGHUP, SIGINT, or SIGTERM, it prints a message and
then exits with an exit status of 2.

If the job is deleted before running to completion, or an internal PBS error occurs, qsub
prints an an error message describing the situation to this error stream and qsub exits with an
exit status of 3.

7.7.2 Caveats for Blocking Jobs

• If you submit a job that is both blocking and interactive, the job’s exit status is not
returned at the end of the job.

• PBS returns the exit status of a blocking job before staging finishes for the job. To see
whether the job is still staging, use qstat -f, and look at the job’s substate attribute.
This attribute has value 51 when files are staging out.

7.8 Deferring Execution

Normally, PBS runs your job as soon as an appropriate slot opens up. Instead, you can spec-
ify a time after which the job is eligible to run. The job is in the wait (W) state from the time
it is submitted until the time it is eligible for execution.

7.8.1 Syntax for Deferring Execution

Use the “-a date_time” option to qsub to specify the time after which the job is eligible
for execution. The date_time argument is in the form:

[[[[CC]YY]MM]DD]hhmm[.SS]
174 PBS Professional 12.1 User’s Guide

Controlling How Your Job Runs Chapter 7
where

CC is the first two digits of the year (the century): optional

YY is the second two digits of the year: optional

MM is the two digits for the month: optional

DD is the day of the month: optional

hh is the hour

mm is the minute

SS is the seconds: optional

If the day DD is in the future, and the month MM is not specified, the month defaults to the
current month. If the day DD is in the past, and the month MM is not specified, the month is
set to next month. For example, if today is the 10th, and you specify the 12th but no month,
your job is eligible to run two days from today, on the 12th.

Similarly, if the time hhmm is in the future, and the day DD is not specified, the day defaults
to the current day. If the time hhmm is in the past, and the day DD is not specified, the day is
set to tomorrow. For example, if you submit a job at 11:15am with a time of “1110”, the job
will be eligible to run at 11:10am tomorrow.

The job’s Execution _Time attribute controls deferred execution. You can set it using either
of the following:

qsub -a 0700 my_job

#PBS -a 10220700

7.9 Setting Your Job’s Priority

PBS includes a place in each job where you can specify the job’s priority. Your administrator
may or may not choose to use this priority value when scheduling jobs. Use the “-p <pri-
ority>” to specify the priority of the job. The priority argument must be an integer between
-1024 (lowest priority) and +1023 (highest priority) inclusive. The default is unset, which is
equivalent to zero.

The Priority job attribute contains the value you specify. Set it via qsub or a directive:

qsub -p 120 my_job

#PBS -p -300

If you need an absolute ordering of your own jobs, see section 7.2, “Using Job Dependen-
cies”, on page 158.
PBS Professional 12.1 User’s Guide 175

Chapter 7 Controlling How Your Job Runs
7.10 Running Your Job Interactively

PBS provides a special kind of batch job called an interactive-batch job or interactive job. An
interactive job is treated just like a regular batch job in that it is queued up, and has to wait for
resources to become available before it can run. However, once it starts, your terminal input
and output are connected to the job similarly to a login session. It appears that you are logged
into one of the available execution machines, and the resources requested by the job are
reserved for that job. This is useful for debugging applications or for computational steering.

Interactive jobs can use provisioning.

7.10.1 Running Your Interactive Job

To run your job interactively, you can do either of the following:

• Use qsub -I at the command line

• Use #PBS interactive=true in a PBS directive

7.10.2 Input and Output for Interactive Jobs

An interactive job comes complete with a pseudotty suitable for running commands that set
terminal characteristics. Once the interactive job has started execution, input to and output
from the job pass through qsub. You provide all input to your interactive job through the ter-
minal session in which the job runs.

For interactive jobs, you can specify PBS directives in a job script. You cannot provide com-
mands to the job by using a job script. For interactive jobs, PBS ignores executable com-
mands in job scripts.

7.10.3 Terminating Interactive Jobs

When you run an interactive job, the qsub command does not terminate when the job is sub-
mitted. qsub remains running until the job terminates, is aborted, or you interrupt qsub with
a SIGINT (the control-C key). If you interrupt qsub before the job starts, qsub queries
whether you want it to exit. If you respond “yes”, qsub exits and the job is aborted.

7.10.4 Special Sequences for Interactive Jobs

Keyboard-generated interrupts are passed to the job. Lines entered that begin with the tilde
('~') character and contain special sequences are interpreted by qsub itself. The recognized
special sequences are:
176 PBS Professional 12.1 User’s Guide

Controlling How Your Job Runs Chapter 7
~.
qsub terminates execution. The batch job is also terminated.

 ~susp
Suspends the qsub program. “susp” is the suspend character, usually
CTRL-Z.

 ~asusp
Suspends the input half of qsub (terminal to job), but allows output to con-
tinue to be displayed. “asusp” is the auxiliary suspend character, usually
control-Y.

7.10.5 Caveats and Restrictions for Interactive Jobs

• Make sure that your login file does not run processes in the background. See section
2.4.2.5, “Avoid Background Processes Inside Jobs”, on page 14.

• Interactive-batch jobs are not supported on Windows.

• You cannot run an array job interactively.

• Interactive jobs are not rerunnable.

• An interactive job on a Cray must run on a login node. See section 12.4.9, “Specify Host
for Interactive Jobs”, on page 272.

7.10.6 Receiving X Output from Interactive Jobs

You can receive X output from an interactive job.

7.10.6.1 How to Receive X Output

To receive X output, use qsub -X -I. For example:

qsub -I -X <return>

xterm <return>

Control is returned here when your X process terminates. You can background the process
here, if you want to.
PBS Professional 12.1 User’s Guide 177

Chapter 7 Controlling How Your Job Runs
7.10.6.1.i Receiving X Output on Non-submission Host

You can view your X output on a host that is not the job submission host. For example, you
submit a job from SubHost, and want to see the output on ViewHost. If you want to receive X
output on a host other than the submission host, do the following:

• Run an X server on ViewHost

• On ViewHost, log into SubHost using ssh -X

• In window logged into SubHost, run qsub -I -X

7.10.6.2 Requirements for Receiving X Output

• The job must be interactive: you must also specify -I.

• An X server must be running on the system where you want to see the X output.

• The DISPLAY variable in the job’s submission environment must be set to the display
where the X output is desired.

• Your administrator must configure MoM’s PATH to include the xauth utility.

7.10.6.3 Viewing X Output Job Attributes

Each job has two read-only attributes containing X forwarding information. These are the fol-
lowing:

forward_x11_cookie
This attribute contains the X authorization cookie.

forward_x11_port
This attribute contains the number of the port being listened to by the port
forwarder on the submission host.

You can view these attributes using qstat -f <job ID>.

7.10.6.4 Caveats and Advice for Receiving X Output

• This option is not available under Windows.

• If you use the qsub -V option, PBS will handle the DISPLAY variable correctly.

• If you use the qsub -v DISPLAY option, you will get an error.

• At most 25 concurrent X applications can run using the same job session.

• If you experience a problem with X when using qsub –X –I, use the following to cre-
ate the correct ~/.Xauthority file for qsub to use when establishing the X session:
ssh –X <hostname> server <-> exec host(s)
178 PBS Professional 12.1 User’s Guide

Controlling How Your Job Runs Chapter 7
7.10.6.5 X Forwarding Errors

• If the DISPLAY environment variable is pointing to a display number that is correctly
formatted but incorrect, submitting an interactive X forwarding job results in the follow-
ing error message:
“cannot read data from 'xauth list <display number>', errno=<errno>”

• If the DISPLAY environment variable is pointing to an incorrectly formatted value, sub-
mitting an interactive X forwarding job results in the following error message:
“qsub: Failed to get xauth data (check $DISPLAY variable)”

• If the X authority utility (xauth) is not found on the submission host, the following error
message is displayed:
“execution of xauth failed: sh: xauth: command not found”

• When the execution of the xauth utility results in an error, the error message displayed
by the xauth utility is preceded by the following:
“execution of xauth failed: ”

• When the qsub -X option is used without -I, the following error message is displayed:
"qsub: X11 forwarding possible only for Interactive Jobs"

7.10.7 Using Environment Variables

PBS provides your job with environment variables where the job runs. PBS takes some from
your submission environment, and creates others. You can create environment variables for
your job. The environment variables created by PBS begin with “PBS_”. The environment
variables that PBS takes from your submission (originating) environment begin with
“PBS_O_”.

For example, here are a few of the environment variables that accompany a job, with typical
values:

PBS_O_HOME=/u/user1

PBS_O_LOGNAME=user1

PBS_O_PATH=/usr/bin:/usr/local/bin:/bin

PBS_O_SHELL=/bin/tcsh

PBS_O_HOST=host1

PBS_O_WORKDIR=/u/user1

PBS_JOBID=16386.server1

For a complete list of PBS environment variables, see “PBS Environment Variables” on page
459 of the PBS Professional Reference Guide.
PBS Professional 12.1 User’s Guide 179

Chapter 7 Controlling How Your Job Runs
7.10.7.1 Exporting All Environment Variables

The “-V” option declares that all environment variables in the qsub command’s environment
are to be exported to the batch job.

qsub -V my_job

#PBS -V

7.10.7.2 Exporting Specific Environment Variables

The “-v variable_list” option to qsub allows you to specify additional environment
variables to be exported to the job. variable_list names environment variables from the qsub
command environment which are made available to the job when it executes. These variables
and their values are passed to the job. These variables are added to those already automati-
cally exported. Format: comma-separated list of strings in the form:

-v variable

or

-v variable=value

If a variable=value pair contains any commas, the value must be enclosed in single or double
quotes, and the variable=value pair must be enclosed in the kind of quotes not used to enclose
the value. For example:

qsub -v DISPLAY,myvariable=32 my_job

qsub -v "var1='A,B,C,D'" job.sh

qsub -v a=10, "var2='A,B'", c=20, HOME=/home/zzz job.sh

7.10.7.3 Caveat for Environment Variables and Shell Functions

Make sure that no exported shell function you want to forward has the same name as an envi-
ronment variable. The shell function will not be visible in the environment.

7.10.8 Forwarding Exported Shell Functions

You can forward exported shell functions using either qsub -V or qsub -v <function
name>. You can also put these functions in your .profile or .login on the execution
host(s).

If you use -v or -V, make sure that there is no environment variable with the same name as any
exported shell functions you want to forward; otherwise, the shell function will not be visible
in the environment.
180 PBS Professional 12.1 User’s Guide

Controlling How Your Job Runs Chapter 7
7.10.9 Caveat for Interactive Jobs and File I/O

When an interactive job finishes, staged files and stdout and/or stderr may not have
been copied back yet.
PBS Professional 12.1 User’s Guide 181

Chapter 7 Controlling How Your Job Runs
182 PBS Professional 12.1 User’s Guide

Chapter 8
Reserving Resources Ahead of
Time

8.1 Terminology

Advance reservation
A reservation for a set of resources for a specified time. The reservation is
only available to a specific user or group of users.

Standing reservation
An advance reservation which recurs at specified times. For example, you
can reserve 8 CPUs and 10GB every Wednesday and Thursday from 5pm to
8pm, for the next three months.

Occurrence of a standing reservation
An instance of the standing reservation.

An occurrence of a standing reservation behaves like an advance reserva-
tion, with the following exceptions:

• while a job can be submitted to a specific advance reservation, it can
only be submitted to the standing reservation as a whole, not to a spe-
cific occurrence. You can only specify when the job is eligible to run.
See“qsub” on page 210 of the PBS Professional Reference Guide.

• when an advance reservation ends, it and all of its jobs, running or
queued, are deleted, but when an occurrence ends, only its running jobs
are deleted.
PBS Professional 12.1 User’s Guide 183

Chapter 8 Reserving Resources Ahead of Time
Each occurrence of a standing reservation has reserved resources which sat-
isfy the resource request, but each occurrence may have its resources drawn
from a different source. A query for the resources assigned to a standing
reservation will return the resources assigned to the soonest occurrence,
shown in the resv_nodes attribute reported by pbs_rstat.

Soonest occurrence of a standing reservation
The occurrence which is currently active, or if none is active, then it is the
next occurrence.

Degraded reservation
An advance reservation for which one or more associated vnodes are
unavailable.

A standing reservation for which one or more vnodes associated with any
occurrence are unavailable.

8.2 Prerequisites for Reserving Resources

The time for which a reservation is requested is in the time zone at the submission host.

You must set the submission host’s PBS_TZID environment variable. The format for
PBS_TZID is a timezone location. Example: America/Los_Angeles, America/
Detroit, Europe/Berlin, Asia/Calcutta. See section 2.4.5, “Setting the Sub-
mission Host’s Time Zone”, on page 18.

8.3 Creating and Using Reservations

8.3.1 Introduction to Creating and Using Reservations

You can create both advance and standing reservations using the pbs_rsub command. PBS
either confirms that the reservation can be made, or rejects the request. Once the reservation
is confirmed, PBS creates a queue for the reservation’s jobs. Jobs are then submitted to this
queue.

When a reservation is confirmed, it means that the reservation will not conflict with currently
running jobs, other confirmed reservations, or dedicated time, and that the requested resources
are available for the reservation. A reservation request that fails these tests is rejected. All
occurrences of a standing reservation must be acceptable in order for the standing reservation
to be confirmed.
184 PBS Professional 12.1 User’s Guide

Reserving Resources Ahead of Time Chapter 8
The pbs_rsub command returns a reservation ID, which is the reservation name. For an
advance reservation, this reservation ID has the format:

R<unique integer>.<server name>

For a standing reservation, this reservation ID refers to the entire series, and has the format:

S<unique integer>.<server name>

You specify the resources for a reservation using the same syntax as for a job. Jobs in reserva-
tions are placed the same way non-reservation jobs are placed in placement sets.

The xpbs GUI cannot be used for creation, querying, or deletion of reservations.

The time for which a reservation is requested is in the time zone at the submission host.

The pbs_rsub command returns a reservation ID string, and the current status of the reser-
vation.

For the options to the pbs_rsub command, see “pbs_rsub” on page 79 of the PBS Profes-
sional Reference Guide.

8.3.2 Creating Advance Reservations

You create an advance reservation using the pbs_rsub command. PBS must be able to cal-
culate the start and end times of the reservation, so you must specify two of the following
three options:

D Duration

E End time

R Start time

8.3.2.1 Setting Time Zone for Advance Reservations

If you need the time zone for your advance reservation to be UTC, set this when you create
the reservation:

TZ=UTC pbs_rsub -R...

8.3.2.2 Examples of Creating Advance Reservations

The following example shows the creation of an advance reservation asking for 1 vnode, 30
minutes of wall-clock time, and a start time of 11:30. Since an end time is not specified, PBS
will calculate the end time based on the reservation start time and duration.

pbs_rsub -R 1130 -D 00:30:00
PBS Professional 12.1 User’s Guide 185

Chapter 8 Reserving Resources Ahead of Time
PBS returns the reservation ID:

R226.south UNCONFIRMED

The following example shows an advance reservation for 2 CPUs from 8:00 p.m. to 10:00
p.m.:

pbs_rsub -R 2000.00 -E 2200.00 -l select=1:ncpus=2

PBS returns the reservation ID:

R332.south UNCONFIRMED

8.3.3 Creating Standing Reservations

You create standing reservations using the pbs_rsub command. You must specify a start
and end date when creating a standing reservation. The recurring nature of the reservation is
specified using the -r option to pbs_rsub. The -r option takes the recurrence_rule
argument, which specifies the standing reservation’s occurrences. The recurrence rule uses
iCalendar syntax, and uses a subset of the parameters described in RFC 2445.

The recurrence rule can take two forms:

"FREQ=freq_spec;COUNT=count_spec;interval_spec"

In this form, you specify how often there will be occurrences, how many there will be, and
which days and/or hours apply.

"FREQ=freq_spec;UNTIL=until_spec;interval_spec"

Do not include any spaces in your recurrence rule.

In this form, you specify how often there will be occurrences, when the occurrences will end,
and which days and/or hours apply.

freq_spec
This is the frequency with which the reservation repeats. Valid values are
WEEKLY|DAILY|HOURLY

When using a freq_spec of WEEKLY, you may use an interval_spec of
BYDAY and/or BYHOUR. When using a freq_spec of DAILY, you may use
an interval_spec of BYHOUR. When using a freq_spec of HOURLY, do not
use an interval_spec.

count_spec
The exact number of occurrences. Number up to 4 digits in length. Format:
integer.
186 PBS Professional 12.1 User’s Guide

Reserving Resources Ahead of Time Chapter 8
interval_spec
Specifies the interval at which there will be occurrences. Can be one or
both of BYDAY=<days> or BYHOUR=<hours>. Valid values are BYDAY
= MO|TU|WE|TH|FR|SA|SU and BYHOUR = 0|1|2|...|23.
When using both, separate them with a semicolon. Separate days or hours
with a comma.

For example, to specify that there will be recurrences on Tuesdays and
Wednesdays, at 9 a.m. and 11 a.m., use BYDAY=TU,WE;BYHOUR=9,11

BYDAY should be used with FREQ=WEEKLY. BYHOUR should be used
with FREQ=DAILY or FREQ=WEEKLY.

until_spec
Occurrences will start up to but not after this date and time. This means that
if occurrences last for an hour, and normally start at 9 a.m., then a time of
9:05 a.m on the day specified in the until_spec means that an occurrence
will start on that day.

Format: YYYYMMDD[THHMMSS]

Note that the year-month-day section is separated from the hour-minute-
second section by a capital T.

Default: 3 years from time of reservation creation.

8.3.3.1 Setting Reservation Start Time and Duration

In a standing reservation, the arguments to the -R and -E options to pbs_rsub can provide
more information than they do in an advance reservation. In an advance reservation, they
provide the start and end time of the reservation. In a standing reservation, they can provide
the start and end time, but they can also be used to compute the duration and the offset from
the interval start.

The difference between the values of the arguments for -R and -E is the duration of the reser-
vation. For example, if you specify

-R 0930 -E 1145

the duration of your reservation will be two hours and fifteen minutes. If you specify

-R 150800 -E 170830

the duration of your reservation will be two days plus 30 minutes.

The interval_spec can be used to specify the day or the hour at which the interval starts. If
you specify

-R 0915 -E 0945 ... BYHOUR=9,10
PBS Professional 12.1 User’s Guide 187

Chapter 8 Reserving Resources Ahead of Time
the duration is 30 minutes, and the offset is 15 minutes from the start of the interval. The
interval start is at 9 and again at 10. Your reservation will run from 9:15 to 9:45, and again at
10:15 and 10:45. Similarly, if you specify

-R 0800 -E -1000 ... BYDAY=WE,TH

the duration is two hours and the offset is 8 hours from the start of the interval. Your reserva-
tion will run Wednesday from 8 to 10, and again on Thursday from 8 to 10.

Elements specified in the recurrence rule override those specified in the arguments to the -R
and -E options. Therefore if you specify

-R 0730 -E 0830 ... BYHOUR=9

the duration is one hour, but the hour element (9:00) in the recurrence rule has overridden the
hour element specified in the argument to -R (7:00). The offset is still 30 minutes after the
interval start. Your reservation will run from 9:30 to 10:30. Similarly, if the 16th is a Mon-
day, and you specify

-R 160800 -E 170900 ... BYDAY=TU;BYHOUR=11

the duration 25 hours, but both the day and the hour elements have been overridden. Your res-
ervation will run on Tuesday at 11, for 25 hours, ending Wednesday at 12. However, if you
specify

-R 160810 -E 170910 ... BYDAY=TU;BYHOUR=11

the duration is 25 hours, and the offset from the interval start is 10 minutes. Your reservation
will run on Tuesday at 11:10, for 25 hours, ending Wednesday at 12:10. The minutes in the
offset weren’t overridden by anything in the recurrence rule.

The values specified for the arguments to the -R and -E options can be used to set the start and
end times in a standing reservation, just as they are in an advance reservation. To do this,
don’t override their elements inside the recurrence rule. If you specify

-R 0930 -E 1030 ... BYDAY=MO,TU

you haven’t overridden the hour or minute elements. Your reservation will run Monday and
Tuesday, from 9:30 to 10:30.

8.3.3.2 Requirements for Creating Standing Reservations

• You must specify a start and end date.

• You must set the submission host’s PBS_TZID environment variable. The format for
PBS_TZID is a timezone location. Example: America/Los_Angeles, Amer-
ica/Detroit, Europe/Berlin, Asia/Calcutta. See section 2.4.5, “Set-
ting the Submission Host’s Time Zone”, on page 18.

• The recurrence rule must be one unbroken line.
188 PBS Professional 12.1 User’s Guide

Reserving Resources Ahead of Time Chapter 8
• The recurrence rule must be enclosed in double quotes.

• Vnodes that have been configured to accept jobs only from a specific queue (vnode-
queue restrictions) cannot be used for advance or standing reservations. See your PBS
administrator to determine whether some vnodes have been configured to accept jobs
only from specific queues.

• Make sure that there are no spaces in your recurrence rule.

8.3.3.3 Examples of Creating Standing Reservations

For a reservation that runs every day from 8am to 10am, for a total of 10 occurrences:

pbs_rsub -R 0800 -E 1000 - r"FREQ=DAILY;COUNT=10"

Every weekday from 6am to 6pm until December 10, 2008:

pbs_rsub -R 0600 -E 1800 -r
"FREQ=WEEKLY;BYDAY=MO,TU,WE,TH,FR;UNTIL=20081210"

Every week from 3pm to 5pm on Monday, Wednesday, and Friday, for 9 occurrences, i.e., for
three weeks:

pbs_rsub -R 1500 -E 1700 -r "FREQ=WEEKLY;BYDAY=MO,WE,FR;COUNT=9"

8.3.3.4 Getting Confirmation of a Reservation

By default the pbs_rsub command does not immediately notify you whether the reserva-
tion is confirmed or denied. Instead you receive email with this information. You can specify
that the pbs_rsub command should wait for confirmation by using the -I <block_time>
option. The pbs_rsub command will wait up to <block_time> seconds for the reservation
to be confirmed or denied and then notify you of the outcome. If block_time is negative and
the reservation is not confirmed in that time, the reservation is automatically deleted.

To find out whether the reservation has been confirmed, use the pbs_rstat command. It
will display the state of the reservation. CO and RESV_CONFIRMED indicate that it is con-
firmed. If the reservation does not appear in the output from pbs_rstat, that means that
the reservation was denied.

To ensure that you receive mail about your reservations, set the reservation’s Mail_Users
attribute via the -M <email address> option to pbs_rsub. By default, you will get email
when the reservation is terminated or confirmed. If you want to receive email about events
other than those, set the reservation’s Mail_Points attribute via the -m <mail events> option.
For more information, see “pbs_rsub” on page 79 of the PBS Professional Reference Guide
and “Reservation Attributes” on page 342 of the PBS Professional Reference Guide.
PBS Professional 12.1 User’s Guide 189

Chapter 8 Reserving Resources Ahead of Time
8.3.4 Deleting Reservations

You can delete an advance or standing reservation by using the pbs_rdel command. For a
standing reservation, you can only delete the entire reservation, including all occurrences.
When you delete a reservation, all of the jobs that have been submitted to the reservation are
also deleted. A reservation can be deleted by its owner or by a PBS Operator or Manager. For
example, to delete S304.south:

pbs_rdel S304.south

or

pbs_rdel S304

8.4 Viewing the Status of a Reservation

The following table shows the list of possible states for a reservation. The states that you will
usually see are CO, UN, BD, and RN, although a reservation usually remains unconfirmed for
too short a time to see that state. See “Reservation States” on page 415 of the PBS Profes-
sional Reference Guide.

To view the status of a reservation, use the pbs_rstat command. It will display the status
of all reservations at the PBS server. For a standing reservation, the pbs_rstat command
will display the status of the soonest occurrence. Duration is shown in seconds. The
pbs_rstat command will not display a custom resource which has been created to be
invisible. See section 5.3.8, “Caveats and Restrictions on Requesting Resources”, on page 79.
This command has three options:

Table 8-1: Options to pbs_rstat Command

Option Meaning Description

B Brief Lists only the names of the reservations

S Short Lists in table format the name, queue name, owner, state, and
start, duration and end times of each reservation

F Full Lists the name and all non-default-value attributes for each
reservation.

<none> Default Default is S option
190 PBS Professional 12.1 User’s Guide

Reserving Resources Ahead of Time Chapter 8
The full listing for a standing reservation is identical to the listing for an advance reservation,
with the following additions:

• A line that specifies the recurrence rule:
reserve_rrule = FREQ=WEEKLY;BYDAY=MO;COUNT=5

• An entry for the vnodes reserved for the soonest occurrence of the standing reservation.
This entry also appears for an advance reservation, but will be different for each occur-
rence:
resv_nodes=(vnode_name:...)

• A line that specifies the total number of occurrences of the standing reservation:
reserve_count = 5

• The index of the soonest occurrence:
reserve_index = 1

• The timezone at the site of submission of the reservation is appended to the reservation’s
Variable_List attribute. For example, in California:
Variable_List=<other variables>PBS_TZID=America/Los_Angeles

To get the status of a reservation at a server other than the default server, set the
PBS_SERVER environment variable to the name of the server you wish to query, then use the
pbs_rstat command. Your PBS commands will treat the new server as the default server,
so you may wish to unset this environment variable when you are finished.

You can also get information about the reservation’s queue by using the qstat command.
See “qstat” on page 194 of the PBS Professional Reference Guide .

8.4.1 Examples of Viewing Reservation Status Using
pbs_rstat

In our example, we have one advance reservation and one standing reservation. The advance
reservation is for today, for two hours, starting at noon. The standing reservation is for every
Thursday, for one hour, starting at 3:00 p.m. Today is Monday, April 28th, and the time is
1:00, so the advance reservation is running, and the soonest occurrence of the standing reser-
vation is Thursday, May 1, at 3:00 p.m.

Example brief output:

pbs_rstat -B

Name: R302.south

Name: S304.south
PBS Professional 12.1 User’s Guide 191

Chapter 8 Reserving Resources Ahead of Time
Example short output:

pbs_rstat -S

Name Queue User State Start / Duration / End

--

R302.south R302 user1 RN Today 12:00 / 7200/ Today 14:00

S304.south S304 user1 CO May 1 2008 15:00/3600/May 1 2008 16:00
192 PBS Professional 12.1 User’s Guide

Reserving Resources Ahead of Time Chapter 8
Example full output:

pbs_rstat -F

Name: R302.south

Reserve_Name = NULL

Reserve_Owner = user1@south.mydomain.com

reserve_state = RESV_RUNNING

reserve_substate = 5

reserve_start = Mon Apr 28 12:00:00 2008

reserve_end = Mon Apr 28 14:00:00 2008

reserve_duration = 7200

queue = R302

Resource_List.ncpus = 2

Resource_List.nodect = 1

Resource_List.walltime = 02:00:00

Resource_List.select = 1:ncpus=2

Resource_List.place = free

resv_nodes = (south:ncpus=2)

Authorized_Users = user1@south.mydomain.com

server = south

ctime = Mon Apr 28 11:00:00 2008

Mail_Users = user1@mydomain.com

mtime = Mon Apr 28 11:00:00 2008

Variable_List = PBS_O_LOGNAME=user1,PBS_O_HOST=south.mydomain.com

Name: S304.south

Reserve_Name = NULL

Reserve_Owner = user1@south.mydomain.com

reserve_state = RESV_CONFIRMED

reserve_substate = 2

reserve_start = Thu May 1 15:00:00 2008

reserve_end = Thu May 1 16:00:00 2008

reserve_duration = 3600

queue = S304

Resource_List.ncpus = 2

Resource_List.nodect = 1

Resource_List.walltime = 01:00:00
PBS Professional 12.1 User’s Guide 193

Chapter 8 Reserving Resources Ahead of Time
Resource_List.select = 1:ncpus=2

Resource_List.place = free

resv_nodes = (south:ncpus=2)

reserve_rrule = FREQ=WEEKLY;BYDAY=MO;COUNT=5

reserve_count = 5

reserve_index = 2

Authorized_Users = user1@south.mydomain.com

server = south

ctime = Mon Apr 28 11:01:00 2008

Mail_Users = user1@mydomain.com

mtime = Mon Apr 28 11:01:00 2008

Variable_List =
PBS_O_LOGNAME=user1,PBS_O_HOST=south.mydomain.com,PBS_TZID=America/
Los_Angeles

8.5 Using Your Reservation

8.5.1 Submitting a Job to a Reservation

Jobs can be submitted to the queue associated with a reservation, or they can be moved from
another queue into the reservation queue. You submit a job to a reservation by using the -q
<queue> option to the qsub command to specify the reservation queue. For example, to sub-
mit a job to the soonest occurrence of a standing reservation named S123.south, submit to
its queue S123:

qsub -q S123 <script>

You move a job into a reservation queue by using the qmove command. For more informa-
tion, see “qsub” on page 210 of the PBS Professional Reference Guide and “qmove” on page
171 of the PBS Professional Reference Guide. For example, to qmove job 22.myhost
from workq to S123, the queue for the reservation named S123.south:

qmove S123 22.myhost

or

qmove S123 22
194 PBS Professional 12.1 User’s Guide

Reserving Resources Ahead of Time Chapter 8
A job submitted to a standing reservation without a restriction on when it can run will be run,
if possible, during the soonest occurrence. In order to submit a job to a specific occurrence,
use the -a <start time> option to the qsub command, setting the start time to the time of the
occurrence that you want. You can also use a cron job to submit a job at a specific time. See
“qsub” on page 210 of the PBS Professional Reference Guide and the cron(8) man page.

8.5.2 Converting a Job into a Reservation Job

The pbs_rsub command can be used to convert a normal job into a reservation job that will
run as soon as possible. PBS creates a reservation queue and a reservation, and moves the job
into the queue. Other jobs can also be moved into that queue via qmove or submitted to that
queue via qsub. The reservation is called an ASAP reservation.

The format for converting a normal job into a reservation job is:

pbs_rsub [-l walltime=time] -W qmove=job_identifier

Example:

pbs_rsub -W qmove=54

pbs_rsub -W qmove=”1234[].server”

The -R and -E options to pbs_rsub are disabled when using the -W qmove option.

For more information, see “pbs_rsub” on page 79 of the PBS Professional Reference Guide.

A job’s default walltime is 5 years. Therefore an ASAP reservation’s start time can be in 5
years, if all the jobs in the system have the default walltime.

You cannot use the pbs_rsub command (or any other command) to request a custom
resource which has been created to be invisible or unrequestable. See section 5.3.8, “Caveats
and Restrictions on Requesting Resources”, on page 79.

8.5.3 Viewing Status of a Job Submitted to a Reservation

You can view the status of a job that has been submitted to a reservation or to an occurrence of
a standing reservation by using the qstat command. See “qstat” on page 194 of the PBS
Professional Reference Guide.

For example, if a job named MyJob has been submitted to the soonest occurrence of the
standing reservation named S304.south, it is listed under S304, the name of the queue:

qstat

Job id Name User Time Use S Queue
PBS Professional 12.1 User’s Guide 195

Chapter 8 Reserving Resources Ahead of Time
---------- --------- ------------ -------- -- -----

139.south MyJob user1 0 Q S304

8.5.4 How Reservations Treat Jobs

A confirmed reservation will accept jobs into its queue at any time. Jobs are only scheduled
to run from the reservation once the reservation period arrives.

The jobs in a reservation are not allowed to use, in aggregate, more resources than the reserva-
tion requested. A reservation job is accepted in the reservation only if its requested walltime
will fit within the reservation period. So for example if the reservation runs from 10:00 to
11:00, and the job’s walltime is 4 hours, the job will not be started.

When an advance reservation ends, any running or queued jobs in that reservation are deleted.

When an occurrence of a standing reservation ends, any running jobs in that reservation are
killed. Any jobs still queued for that reservation are kept in the queued state. They are
allowed to run in future occurrences. When the last occurrence of a standing reservation ends,
all jobs remaining in the reservation are deleted, whether queued or running.

A job in a reservation cannot be preempted.

A job in a reservation runs with the normal job environment variables; see section 7.10.7,
“Using Environment Variables”, on page 179.

8.5.4.1 Caveats for How Reservations Treat Jobs

If you submit a job to a reservation, and the job’s walltime fits within the reservation period,
but the time between when you submit the job and when the reservation ends is less than the
job’s walltime, PBS will start the job, and then kill it if it is still running when the reservation
ends.

8.5.5 Who Can Use Your Reservation

By default, the reservation accepts jobs only from the user who created the reservation, and
accepts jobs submitted from any group or host. You can specify a list of users and groups
whose jobs will and will not be accepted by the reservation by setting the reservation’s
Authorized_Users and Authorized_Groups attributes using the -U auth_user_list
and -G auth_group_list options to pbs_rsub. You can specify the hosts from which jobs
can and cannot be submitted by setting the reservation’s Authorized_Hosts attribute
using the -H auth_host_list option to pbs_rsub.

The administrator can also specify which users and groups can and cannot submit jobs to a
reservation, and the list of hosts from which jobs can and cannot be submitted.
196 PBS Professional 12.1 User’s Guide

Reserving Resources Ahead of Time Chapter 8
For more information, see “pbs_rsub” on page 79 of the PBS Professional Reference Guide
and “Reservation Attributes” on page 342 of the PBS Professional Reference Guide.

8.6 Reservation Caveats and Errors

8.6.1 Time Zone Must be Correct

The environment variable PBS_TZID must be set at the submission host. The time for which
a reservation is requested is the time defined at the submission host. See section 2.4.5, “Set-
ting the Submission Host’s Time Zone”, on page 18.

8.6.2 Reservation Errors

The following table describes the error messages that apply to reservations:

Table 8-2: Reservation Errors

Description of Error

Server
Log
Error
Code

Error Message

Invalid syntax when specifying a standing
reservation

15133 “pbs_rsub error:
Undefined iCalendar
syntax”

Recurrence rule has both a COUNT and an
UNTIL parameter

15134 “pbs_rsub error:
Undefined iCalendar
syntax. COUNT or
UNTIL is required”

Recurrence rule missing valid COUNT or
UNTIL parameter

15134 “pbs_rsub error:
Undefined iCalendar
syntax. A valid COUNT
or UNTIL is required”
PBS Professional 12.1 User’s Guide 197

Chapter 8 Reserving Resources Ahead of Time
Problem with the start and/or end time of
the reservation, such as:

• Given start time is earlier than current
date and time

• Missing start time or end time

• End time is earlier than start time

15086 “pbs_rsub: Bad time
specification(s)”

Reservation duration exceeds 24 hours and
the recurrence frequency, FREQ, is set to
DAILY

15129 “pbs_rsub error:
DAILY recurrence
duration cannot
exceed 24 hours”

Reservation duration exceeds 7 days and
the frequency FREQ is set to WEEKLY

15128 “pbs_rsub error:
WEEKLY recurrence
duration cannot
exceed 1 week”

Reservation duration exceeds 1 hour and
the frequency FREQ is set to HOURLY or
the BY-rule is set to BYHOUR and occurs
every hour, such as BYHOUR=9,10

15130 “pbs_rsub error:
HOURLY recurrence
duration cannot
exceed 1 hour”

The PBS_TZID environment variable is
not set correctly at the submission host;
rejection at submission host

None “pbs_rsub error: a
valid PBS_TZID time-
zone environment
variable is required”

The PBS_TZID environment variable is
not set correctly at the submission host;
rejection at Server

15135 “Unrecognized
PBS_TZID environment
variable”

Table 8-2: Reservation Errors

Description of Error

Server
Log
Error
Code

Error Message
198 PBS Professional 12.1 User’s Guide

Reserving Resources Ahead of Time Chapter 8
8.6.3 Time Required Between Reservations

Leave enough time between reservations for the reservations and jobs in them to clean up. A
job consumes resources even while it is in the E or exiting state. This can take longer when
large files are being staged. If the job is still running when the reservation ends, it may take
up to two minutes to be cleaned up. The reservation itself cannot finish cleaning up until its
jobs are cleaned up. This will delay the start time of jobs in the next reservation unless there
is enough time between the reservations for cleanup.

8.6.4 Cannot Mix Reservations and mpp*

Do not request any mpp* resources in a reservation. PBS mpp* resources are loosely cou-
pled to Cray resources, and those Cray resources are not completely controlled by PBS. A
reservation requesting mppnodes, for example, does not prevent ALPS from running another
job on those nodes. If this happens, the PBS job in the reservation is prevented from running,
even though those resources are reserved. Mixing reservations and mpp* resources would
lead to disappointment.

8.6.5 Reservation Information in the Accounting Log

The PBS Server writes an accounting record for each reservation in the job accounting file.
The accounting record for a reservation is similar to that for a job. The accounting record for
any job belonging to a reservation will include the reservation ID. See “Accounting Log” on
page 419 of the PBS Professional Reference Guide.

8.6.6 Reservation Fault Tolerance

If one or more vnodes allocated to an advance reservation or to the soonest occurrence of a
standing reservation become unavailable, the reservation’s state becomes DG or
RESV_DEGRADED. A degraded reservation does not have all the reserved resources to run
its jobs.

PBS attempts to reconfirm degraded reservations. This means that it looks for alternate avail-
able vnodes on which to run the reservation. The reservation’s retry_time attribute lists the
next time when PBS will try to reconfirm the reservation.

If PBS is able to reconfirm a degraded reservation, the reservation’s state becomes CO, or
RESV_CONFIRMED, and the reservation’s resv_nodes attribute shows the new vnodes.
PBS Professional 12.1 User’s Guide 199

Chapter 8 Reserving Resources Ahead of Time
200 PBS Professional 12.1 User’s Guide

Chapter 9
Job Arrays

9.1 Advantages of Job Arrays

PBS provides job arrays, which are useful for collections of almost-identical jobs. Each job
in a job array is called a “subjob”. Subjobs are scheduled and treated just like normal jobs,
with the exceptions noted in this chapter. You can group closely related work into a set so that
you can submit, query, modify, and display the set as a unit. Job arrays are useful where you
want to run the same program over and over on different input files. PBS can process a job
array more efficiently than it can the same number of individual normal jobs. Job arrays are
suited for SIMD operations, for example, parameter sweep applications, rendering in media
and entertainment, EDA simulations, and forex (historical data).

9.2 Terminology

Job array identifier
The identifier returned upon success when submitting a job array.

Job array range
A set of subjobs within a job array. When specifying a range, indices used
must be valid members of the job array’s indices.

Sequence number
The numeric part of a job or job array identifier, e.g. 1234.
PBS Professional 12.1 User’s Guide 201

Chapter 9 Job Arrays
Subjob
Individual entity within a job array (e.g. 1234[7], where 1234[] is the job
array itself, and 7 is the index) which has many properties of a job as well
as additional semantics (defined below.)

Subjob index
The unique index which differentiates one subjob from another. This must
be a non-negative integer.

9.3 Description of Job Arrays

A job array is a compact representation of two or more jobs. A job that is part of a job array is
called a “subjob”. Each subjob in a job array is treated exactly like a normal job, except for
any differences noted in this chapter.

9.3.1 Job Script for Job Arrays

All subjobs in a job array share a single job script, including the PBS directives and the shell
script portion. The job script is run once for each subjob.

The job script may invoke different commands based on the subjob index. The commands of
course may be scripts themselves if the script is setup correctly and is marked executable.
This could be done by naming different commands with the subjob index as in your example
or by "if" statements in the script.

9.3.2 Attributes and Resources for Job Arrays

All subjobs have the same attributes, including resource requirements and limits.

The same job script runs for each subjob, so each subjob gets the same attributes and
resources. If the job script calls other scripts or commands, those scripts or commands cannot
change the attributes and resources for individual subjobs, because PBS stops processing
directives when it starts processing commands.

9.3.3 Scheduling Job Arrays and Subjobs

The scheduler handles each subjob in a job array as a separate job. All subjobs within a job
array have the same scheduling priority.
202 PBS Professional 12.1 User’s Guide

Job Arrays Chapter 9
9.3.3.1 Starving

A job array’s starving status is based on the queued portion of the array. This means that if
there is a queued subjob which is starving, the job array is starving. A running subjob retains
the starving status it had when it was started.

9.3.4 Identifier Syntax

The sequence number (1234 in 1234[].server) is unique, so that jobs and job arrays cannot
share a sequence number. The job identifiers of the subjobs in the same job array are the same
except for their indices. Each subjob has a unique index. You can refer to job arrays or parts
of job arrays using the following syntax forms:

• The job array object itself: The format is sequence_number[] or
sequence_number[].server.domain.com

Example: 1234[].server or 1234[]

• A single subjob with index M: The format is sequence_number[M] or
sequence_number[M].server.domain.com

Example: 1234[M].server or 1234[M]

• A range of subjobs of a job array: The format is sequence_number[start-end[:step]] or
sequence_number[start-end[:step]].server.domain.com

Example: 1234[X-Y:Z].server or 1234[X-Y:Z]

9.3.4.1 Examples of Using Identifier Syntax

1234[].server.domain.com Full job array identifier

1234[] Short job array identifier

1234[73] Subjob identifier of the 73rd index of job array 1234[]

1234 Error, if 1234[] is a job array

1234.server.domain.com Error, if 1234[].server.domain.com is a job array

9.3.4.2 Shells and Array Identifiers

Since some shells, for example csh and tcsh, read “[” and “]” as shell metacharacters, job
array names and subjob names must be enclosed in double quotes for all PBS commands.
PBS Professional 12.1 User’s Guide 203

Chapter 9 Job Arrays
Example:

qdel “1234.myhost[5]”

qdel “1234.myhost[]”

Single quotes will work, except where you are using shell variable substitution.

9.3.5 Special Attributes for Job Arrays

Job arrays and subjobs have all of the attributes of a job. In addition, they have the following
when appropriate. These attributes are read-only.

9.3.6 Job Array States

The state of subjobs in the same job array can be different. See “Job Array States” on page
410 of the PBS Professional Reference Guide and “Subjob States” on page 411 of the PBS
Professional Reference Guide.

Table 9-1: Job Array Attributes

Name Type
Applies

To
Value

array Boolean Job array True if item is job array

array_id String Subjob Subjob’s job array identifier

array_index String Subjob Subjob’s index number

array_state_count String Job array Similar to state_count
attribute for server and queue
objects. Lists number of sub-
jobs in each state.

array_indices_remaining String Job array List of indices of subjobs still
queued. Range or list of
ranges, e.g. 500, 552, 596-1000

array_indices_submitted String Job array Complete list of indices of sub-
jobs given at submission time.
Given as range, e.g. 1-100
204 PBS Professional 12.1 User’s Guide

Job Arrays Chapter 9
9.3.7 PBS Environmental Variables for Job Arrays

9.3.8 Accounting

Job accounting records for job arrays and subjobs are the same as for jobs. When a job array
has been moved from one server to another, the subjob accounting records are split between
the two servers.

Subjobs do not have “Q” records.

9.3.9 Prologues and Epilogues

If defined, prologues and epilogues run at the beginning and end of each subjob, but not for
the array object.

9.3.10 The “Rerunnable” Flag and Job Arrays

Job arrays are required to be rerunnable. PBS will not accept a job array that is marked as not
rerunnable. You can submit a job array without specifying whether it is rerunnable, and PBS
will automatically mark it as rerunnable.

Table 9-2: PBS Environmental Variables for Job Arrays

Environment Variable
Name

Used For Description

PBS_ARRAY_INDEX subjobs Subjob index in job array, e.g. 7

PBS_ARRAY_ID subjobs Identifier for a job array. Sequence number
of job array, e.g. 1234[].server

PBS_JOBID Jobs, subjobs Identifier for a job or a subjob. For subjob,
sequence number and subjob index in brack-
ets, e.g. 1234[7].server
PBS Professional 12.1 User’s Guide 205

Chapter 9 Job Arrays
9.4 Submitting a Job Array

9.4.1 Job Array Submission Syntax

You submit a job array through a single command. You specify subjob indices at submission.
You can specify any of the following:

• A contiguous range, e.g. 1 through 100

• A range with a stepping factor, e.g. every second entry in 1 through 100 (1, 3, 5, ... 99)

Syntax for submitting a job array:

qsub -J <index start>-<index end>[:stepping factor]

where

index start is the lowest index number in the range

index end is the highest index number in the range

stepping factor is the optional difference between index numbers

The index start and end must be whole numbers, and the stepping factor must be a positive
integer. The index end must be greater than the index start. If the index end is not a multiple
of the stepping factor above the index start, it will not be used as an index value, and the high-
est index value used will be lower than the index end. For example, if index start is 1, index
end is 8, and the stepping factor is 3, the index values are 1, 4, and 7.

9.4.2 Examples of Submitting Job Arrays

Example 9-1: To submit a job array of 10,000 subjobs, with indices 1, 2, 3, ... 10000:

$ qsub -J 1-10000 job.scr

1234[].server.domain.com

Example 9-2: To submit a job array of 500 subjobs, with indices 500, 501, 502, ... 1000:

$ qsub -J 500-1000 job.scr

1235[].server.domain.com

Example 9-3: To submit a job array with indices 1, 3, 5 ... 999:

$ qsub -J 1-1000:2 job.scr

1236[].server.domain.com
206 PBS Professional 12.1 User’s Guide

Job Arrays Chapter 9
9.4.3 File Staging for Job Arrays

When preparing files to be staged for a job array, plan on naming the files so that they match
the index numbers of the subjobs. For example, inputfile3 is meant to be used by the
subjob with index value 3.

To stage files for job arrays, you use the same mechanism as for normal jobs, but include a
variable to specify the subjob index. This variable is named array_index.

9.4.3.1 File Staging Syntax for Job Arrays

You can specify files to be staged in before the job runs and staged out after the job runs. For-
mat:

qsub -W stagein=<stagein file list> -W stageout=<stageout file list>

You can use these as options to qsub, or as directives in the job script.

For both stagein and stageout, the file list has the form:

execution_path^array_index^@storage_hostname:storage_path^array_index^[,...]

The name execution_path<index number> is the name of the file in the job’s staging and exe-
cution directory (on the execution host). The execution_path can be relative to the job’s
staging and execution directory, or it can be an absolute path.

The ‘@’ character separates the execution specification from the storage specification.

The name storage_path<index number> is the file name on the host specified by
storage_hostname. For stagein, this is the location where the input files come from.
For stageout, this is where the output files end up when the job is done. You must specify a
storage_hostname. The name can be absolute, or it can be relative to your home direc-
tory on the remote machine.

For stagein, the direction of travel is from storage_path to execution_path.

For stageout, the direction of travel is from execution_path to storage_path.

When staging more than one set of filenames, separate the filenames with a comma and
enclose the entire list in double quotes.

9.4.3.2 Job Array Staging Syntax on Windows

In Windows the stagein and stageout string must be contained in double quotes when using
^array_index^.
PBS Professional 12.1 User’s Guide 207

Chapter 9 Job Arrays
Example of a stagein:

qsub -W stagein="foo.^array_index^@host-1:C:\WINNT\Temp\foo.^array_index^"
-J 1-5 stage_script

Example of a stageout:

qsub -W stageut="C:\WINNT\Temp\foo.^array_index^@host-
1:Q:\my_username\foo. ^array_index^_out" -J 1-5 stage_script

9.4.3.3 Job Array File Staging Caveats

We recommend using an absolute pathname for the storage_path. Remember that the
path to your home directory may be different on each machine, and that when using sandbox
= PRIVATE, you may or may not have a home directory on all execution machines.
208 PBS Professional 12.1 User’s Guide

Job Arrays Chapter 9
9.4.3.4 Examples of Staging for Job Arrays

Example 9-4: Simple example:

storage_path: store:/film

Data files used as input: frame1, frame2, frame3

execution_path: pix

Executable: a.out

For this example, a.out produces frame2.out from frame2.

#PBS -W stagein=pix/in/frame^array_index^@store:/film/frame^array_index^

#PBS- W stageout=pix/out/frame^array_index^.out @store:/film/
frame^array_index^.out

#PBS -J 1-3 a.out frame$PBS_ARRAY_INDEX ./in ./out

Note that the stageout statement is all one line, broken here for readability.

The result is that your directory named “film” contains the original files frame1,
frame2, frame3, plus the new files frame1.out, frame2.out and
frame3.out.

Example 9-5: In this example, we have a script named ArrayScript which calls scriptlet1 and
scriptlet2.

All three scripts are located in /homedir/testdir.

#!/bin/sh

#PBS -N ArrayExample

#PBS -J 1-2

echo "Main script: index " $PBS_ARRAY_INDEX

/homedir/testdir/scriptlet$PBS_ARRAY_INDEX

In our example, scriptlet1 and scriptlet2 simply echo their names. We run ArrayScript
using the qsub command:

qsub ArrayScript

Example 9-6: In this example, we have a script called StageScript. It takes two input
files, dataX and extraX, and makes an output file, newdataX, as well as echoing
PBS Professional 12.1 User’s Guide 209

Chapter 9 Job Arrays
which iteration it is on. The dataX and extraX files will be staged from inputs to
work, then newdataX will be staged from work to outputs.

#!/bin/sh

#PBS -N StagingExample

#PBS -J 1-2

#PBS -W stagein=”/homedir/work/data^array_index^

@host1:/homedir/inputs/data^array_index^, \

/homedir/work/extra^array_index^ \

@host1:/homedir/inputs/extra^array_index^”

#PBS -W stageout=/homedir/work/newdata^array_index^

@host1:/homedir/outputs/newdata^array_index^

echo "Main script: index " $PBS_ARRAY_INDEX

cd /homedir/work

cat data$PBS_ARRAY_INDEX extra$PBS_ARRAY_INDEX \

>> newdata$PBS_ARRAY_INDEX

Local path (execution directory):

/homedir/work

Remote host (data storage host):

host1

Remote path for inputs (original data files dataX and extraX):

/homedir/inputs

Remote path for results (output of computation newdataX):

/homedir/outputs

StageScript resides in /homedir/testdir. In that directory, we can run it by
typing:

qsub StageScript

It will run in /homedir, our home directory, which is why the line

“cd /homedir/work”

 is in the script.

Example 9-7: In this example, we have the same script as before, but we will run it in a stag-
ing and execution directory created by PBS. StageScript takes two input files, dataX
and extraX, and makes an output file, newdataX, as well as echoing which iteration it
is on. The dataX and extraX files will be staged from inputs to the staging and
210 PBS Professional 12.1 User’s Guide

Job Arrays Chapter 9
execution directory, then newdataX will be staged from the staging and execution
directory to outputs.

#!/bin/sh

#PBS -N StagingExample

#PBS -J 1-2

#PBS -W stagein=”data^array_index^\

@host1:/homedir/inputs/data^array_index^, \

extra^array_index^ \

@host1:/homedir/inputs/extra^array_index^”

#PBS -W stageout=newdata^array_index^\

@host1:/homedir/outputs/newdata^array_index^

echo "Main script: index " $PBS_ARRAY_INDEX

cat data$PBS_ARRAY_INDEX extra$PBS_ARRAY_INDEX \

>> newdata$PBS_ARRAY_INDEX

Local path (execution directory): created by PBS; we don’t know the name

Remote host (data storage host):

host1

Remote path for inputs (original data files dataX and extraX):

/homedir/inputs

Remote path for results (output of computation newdataX):

/homedir/outputs

StageScript resides in /homedir/testdir. In that directory, we can run it by
typing:

qsub StageScript

It will run in the staging and execution directory created by PBS. See section 4.2, “Input/
Output File Staging”, on page 49.
PBS Professional 12.1 User’s Guide 211

Chapter 9 Job Arrays
9.4.4 Filenames for Standard Output and Standard Error

The name for stdout for a subjob defaults to <job name>.o<sequence number>.<index>,
and the name for stderr for a subjob defaults to <job name>.e<sequence num-
ber>.<index>.

Example 9-8: The job is named “fixgamma” and the sequence number is “1234”.

The subjob with index 7 is 1234[7].<server name>. For this subjob, stdout and
stderr are named fixgamma.o1234.7 and fixgamma.e1234.7.

9.4.5 Job Array Dependencies

Job dependencies are supported for the following relationships:

• Between job arrays and job arrays

• Between job arrays and jobs

• Between jobs and job arrays

9.4.5.1 Caveats for Job Array Dependencies

Job dependencies are not supported for subjobs or ranges of subjobs.

9.4.6 Job Array Exit Status

The exit status of a job array is determined by the status of each of the completed subjobs. It
is only available when all valid subjobs have completed. The individual exit status of a com-
pleted subjob is passed to the epilogue, and is available in the ‘E’ accounting log record of
that subjob.

Table 9-3: Job Array Exit Status

Exit Status Meaning

0 All subjobs of the job array returned an exit status of 0. No PBS error
occurred. Deleted subjobs are not considered

1 At least 1 subjob returned a non-zero exit status. No PBS error
occurred.

2 A PBS error occurred.
212 PBS Professional 12.1 User’s Guide

Job Arrays Chapter 9
9.4.6.1 Making qsub Wait Until Job Array Finishes

Blocking qsub waits until the entire job array is complete, then returns the exit status of the
job array.

9.4.7 Caveats for Submitting Job Arrays

9.4.7.1 No Interactive Job Submission of Job Arrays

Interactive submission of job arrays is not allowed.

9.5 Viewing Status of a Job Array

You can use the qstat command to query the status of a job array. The default output is to
list the job array in a single line, showing the job array Identifier. You can combine options.
To show the state of all running subjobs, use -t -r. To show the state of subjobs only, not
job arrays, use -t -J.

9.5.1 Example of Viewing Job Array Status

We run an example job and an example job array, on a machine with 2 processors:

Table 9-4: Job Array and Subjob Options to qstat

Option Result

-t Shows state of job array object and subjobs.

Also shows state of jobs.

-J Shows state only of job arrays.

-p Prints the default display, with column for Percentage Completed.

For a job array, this is the number of subjobs completed or deleted divided by
the total number of subjobs. For a job, it is time used divided by time
requested.
PBS Professional 12.1 User’s Guide 213

Chapter 9 Job Arrays
demoscript:

#!/bin/sh

#PBS -N JobExample

sleep 60

arrayscript:

#!/bin/sh

#PBS -N ArrayExample

#PBS -J 1-5

sleep 60

We run these scripts using qsub:

qsub arrayscript

1235[].host

qsub demoscript

1236.host

We query using various options to qstat:

qstat

Job id Name User Time Use S Queue

----------- ------------ ---------- -------- - -----

1235[].host ArrayExample user1 0 B workq

1236.host JobExample user1 0 Q workq

qstat -J

Job id Name User Time Use S Queue

----------- ------------ ---------- -------- - -----

1235[].host ArrayExample user1 0 B workq

qstat -p

Job id Name User % done S Queue

----------- ------------ ---------- ------- - -----

1235[].host ArrayExample user1 0 B workq

1236.host JobExample user1 -- Q workq
214 PBS Professional 12.1 User’s Guide

Job Arrays Chapter 9
qstat -t

Job id Name User Time Use S Queue

----------- ------------ ---------- -------- - -----

1235[].host ArrayExample user1 0 B workq

1235[1].host ArrayExample user1 00:00:00 R workq

1235[2].host ArrayExample user1 00:00:00 R workq

1235[3].host ArrayExample user1 0 Q workq

1235[4].host ArrayExample user1 0 Q workq

1235[5].host ArrayExample user1 0 Q workq

1236.host JobExample user1 0 Q workq

qstat -Jt

Job id Name User Time Use S Queue

------------ ------------ ----- -------- - -----

1235[1].host ArrayExample user1 00:00:00 R workq

1235[2].host ArrayExample user1 00:00:00 R workq

1235[3].host ArrayExample user1 0 Q workq

1235[4].host ArrayExample user1 0 Q workq

1235[5].host ArrayExample user1 0 Q workq

After the first two subjobs finish:

qstat -Jtp

Job id Name User % done S Queue

------------ ------------ ----- ------ - -----

1235[1].host ArrayExample user1 100 X workq

1235[2].host ArrayExample user1 100 X workq

1235[3].host ArrayExample user1 -- R workq

1235[4].host ArrayExample user1 -- R workq

1235[5].host ArrayExample user1 -- Q workq
PBS Professional 12.1 User’s Guide 215

Chapter 9 Job Arrays
qstat -pt

Job id Name User % done S Queue

------------ ------------ ----- ------ - -----

1235[].host ArrayExample user1 40 B workq

1235[1].host ArrayExample user1 100 X workq

1235[2].host ArrayExample user1 100 X workq

1235[3].host ArrayExample user1 -- R workq

1235[4].host ArrayExample user1 -- R workq

1235[5].host ArrayExample user1 -- Q workq

1236.host JobExample user1 -- Q workq

Now if we wait until only the last subjob is still running:

qstat -rt

 Req'd Req'd Elap

Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time

----------- ------ ----- --------- ---- --- --- ------ ---- - -----

1235[5].host user1 workq ArrayExamp 3048 -- 1 -- -- R 00:00

1236.host user1 workq JobExample 3042 -- 1 -- -- R 00:00

qstat -Jrt

 Req'd Req'd Elap

Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time

----------- -------- ----- --------- ---- --- --- ------ ---- - -----

1235[5].host user1 workq ArrayExamp 048 -- 1 -- -- R 00:01
216 PBS Professional 12.1 User’s Guide

Job Arrays Chapter 9
9.6 Using PBS Commands with Job Arrays

The following table shows how you can or cannot use PBS commands with job arrays, sub-
jobs or ranges:

Table 9-5: Using PBS Commands with Job Arrays

Argument to Command

Command
Array[]: Array

Object

Array[Range]:
Specified Range of

Subjobs

Array[Index]:
Specified
Subjob

qalter Array object erroneous erroneous

qdel Array object & Run-
ning subjobs

Running subjobs in speci-
fied range

Specified subjob

qhold Array object &
Queued subjobs

erroneous erroneous

qmove Array object &
Queued subjobs

erroneous erroneous

qmsg erroneous erroneous erroneous

qorder Array object erroneous erroneous

qrerun Running and finished
subjobs

Running subjobs in speci-
fied range

Specified subjob

qrls Array object &
Queued subjobs

erroneous erroneous

qsig Running subjobs Running subjobs in speci-
fied range

Specified subjob

qstat Array object Specified range of subjobs Specified subjob

tracejob erroneous erroneous Specified subjob
PBS Professional 12.1 User’s Guide 217

Chapter 9 Job Arrays
9.6.1 Deleting a Job Array

The qdel command will take a job array identifier, subjob identifier or job array range. The
indicated object(s) are deleted, including any currently running subjobs. Running subjobs are
treated like running jobs. Subjobs not running are deleted and never run.

By default, one email is sent per deleted subjob, so deleting a job array of 5000 subjobs results
in 5000 emails being sent, unless you are suppressing the number of emails sent. See “-
Wsuppress_email=<N>” on page 145 of the PBS Professional Reference Guide.

9.6.2 Altering a Job Array

The qalter command can only be used on a job array object, not on subjobs or ranges. Job
array attributes are the same as for jobs.

9.6.3 Moving a Job Array

The qmove command can only be used with job array objects, not with subjobs or ranges.
Job arrays can only be moved from one server to another if they are in the ‘Q’, ‘H’, or ‘W’
states, and only if there are no running subjobs. The state of the job array object is preserved
in the move. The job array will run to completion on the new server.

As with jobs, a qstat on the server from which the job array was moved does not show the
job array. A qstat on the job array object is redirected to the new server.

9.6.4 Holding a Job Array

The qhold command can only be used with job array objects, not with subjobs or ranges.
A hold can be applied to a job array only from the ‘Q’, ‘B’ or ‘W’ states. This puts the job
array in the ‘H’, held, state. If any subjobs are running, they will run to completion. No
queued subjobs are started while in the ‘H’ state.

9.6.5 Releasing a Job Array

The qrls command can only be used with job array objects, not with subjobs or ranges. If
the job array was in the ‘Q’ or ‘B’ state, it is returned to that state. If it was in the ‘W’ state, it
is returned to that state, unless its waiting time was reached, in which case it goes to the ‘Q’
state.
218 PBS Professional 12.1 User’s Guide

Job Arrays Chapter 9
9.6.6 Selecting Job Arrays

The default behavior of qselect is to return the job array identifier, without returning sub-
job identifiers.

The qselect command does not return any job arrays when the state selection (-s) option
restricts the set to ‘R’, ‘S’, ‘T’ or ‘U’, because a job array will never be in any of these states.
However, you can use qselect to return a list of subjobs by using the -t option.

You can combine options to qselect. For example, to restrict the selection to subjobs, use
both the -J and the -T options. To select only running subjobs, use -J -T -sR.

9.6.7 Ordering Job Arrays in the Queue

The qorder command can only be used with job array objects, not on subjobs or ranges.
This changes the queue order of the job array in association with other jobs or job arrays in the
queue.

9.6.8 Requeueing a Job Array

The qrerun command will take a job array identifier, subjob identifier or job array range. If
a job array identifier is given as an argument, it is returned to its initial state at submission
time, or to its altered state if it has been qaltered. All of that job array’s subjobs are requeued,
which includes those that are currently running, and those that are completed and deleted. If
a subjob or range is given, those subjobs are requeued as jobs would be.

Table 9-6: Options to qselect for Job Arrays

Option Selects Result

(none) jobs,

job arrays

Shows job and job array identifiers

-J job arrays Shows only job array identifiers

-T jobs,

subjobs

Shows job and subjob identifiers
PBS Professional 12.1 User’s Guide 219

Chapter 9 Job Arrays
9.6.9 Signaling a Job Array

If a job array object, subjob or job array range is given to qsig, all currently running subjobs
within the specified set are sent the signal.

9.6.10 Sending Messages to Job Arrays

The qmsg command is not supported for job arrays.

9.6.11 Getting Log Data on Job Arrays

The tracejob command can be run on job arrays and individual subjobs. When trace-
job is run on a job array or a subjob, the same information is displayed as for a job, with
additional information for a job array. Note that subjobs do not exist until they are running, so
tracejob will not show any information until they are. When tracejob is run on a job
array, the information displayed is only that for the job array object, not the subjobs. Job
arrays themselves do not produce any MoM log information. Running tracejob on a job
array gives information about why a subjob did not start.

9.6.12 Caveats for Using PBS Commands with Job Arrays

9.6.12.1 Shells and PBS Commands with Job Arrays

Some shells such as csh and tcsh use the square bracket (“[”, “]”) as a metacharacter.
When using one of these shells, and a PBS command taking subjobs, job arrays or job array
ranges as arguments, the subjob, job array or job array range must be enclosed in double
quotes.

9.6.12.2 No xpbs Command for Job Arrays

xpbs does not support job arrays.

9.7 Job Array Caveats

9.7.1 Job Arrays Required to be Rerunnable

Job arrays are required to be rerunnable, and are rerunnable by default.
220 PBS Professional 12.1 User’s Guide

Job Arrays Chapter 9
9.7.2 Resources Same for All Subjobs

You cannot combine jobs into an array that have different hardware requirements, i.e. differ-
ent select statements.

9.7.3 Checkpointing Not Supported for Job Arrays

Checkpointing is not supported for job arrays. On systems that support checkpointing, sub-
jobs are not checkpointed, instead they run to completion.
PBS Professional 12.1 User’s Guide 221

Chapter 9 Job Arrays
222 PBS Professional 12.1 User’s Guide

Chapter 10
Working with PBS Jobs

10.1 Current vs. Historical Jobs

PBS Professional can provide job history information, including what the submission parame-
ters were, whether the job started execution, whether execution succeeded, whether staging
out of results succeeded, and which resources were used.

PBS can keep job history for jobs which have finished execution, were deleted, or were
moved to another server.

10.1.1 Definitions

Moved jobs
Jobs which were moved to another server

Finished jobs
Jobs whose execution is done, for any reason:

• Jobs which finished execution successfully and exited

• Jobs terminated by PBS while running

• Jobs whose execution failed because of system or network failure

• Jobs which were deleted before they could start execution
PBS Professional 12.1 User’s Guide 223

Chapter 10 Working with PBS Jobs
10.1.2 Job History Information

PBS can keep all job attribute information, including the following:

• Submission parameters

• Whether the job started execution

• Whether execution succeeded

• Whether staging out of results succeeded

• Which resources were used

PBS keeps job history for the following jobs:

• Jobs that have finished execution

• Jobs that were deleted

• Jobs that were moved to another server

The job history for finished and moved jobs is preserved and available for the specified dura-
tion. After the duration has expired, PBS deletes the job history information and it is no
longer available. The state of a finished job is F, and the state of a moved job is M. See “Job
States” on page 407 of the PBS Professional Reference Guide.

Subjobs are not considered finished jobs until the parent array job is finished, which happens
when all of its subjobs have terminated execution.

10.1.2.1 Working With Moved Jobs

You can use the following commands with moved jobs. They will function as they do with
normal jobs.

qalter

qhold

qmove

qmsg

qorder

qrerun

qrls

qrun

qsig
224 PBS Professional 12.1 User’s Guide

Working with PBS Jobs Chapter 10
10.1.2.2 PBS Commands and Finished Jobs

The commands listed above cannot be used with finished jobs, whether they finished at the
local server or a remote server. These jobs are no longer running; PBS is storing their infor-
mation, and this information cannot be altered. Trying to use one of the above commands
with a finished job results in the following error message:

<command name>: Job <job ID> has finished

10.2 Modifying Job Attributes

Most attributes can be changed by the owner of the job (or a manager or operator) while the
job is still queued. However, once a job begins execution, the only resources that can be
modified are cputime and walltime. These can only be reduced.

When the qalter -l option is used to alter the resource list of a queued job, it is important
to understand the interactions between altering the select directive and job limits.

If the job was submitted with an explicit "-l select=", then vnode-level resources must be
qaltered using the "-l select=" form. In this case a vnode level resource RES cannot be
qaltered with the "-l <resource>" form.

For example:

Submit the job:

% qsub -l select=1:ncpus=2:mem=512mb jobscript

Job’s ID is 230

qalter the job using "-l RES" form:

% qalter -l ncpus=4 230

Error reported by qalter:

qalter: Resource must only appear in "select"

specification when select is used: ncpus 230

qalter the job using the "-l select=" form:

% qalter -l select=1:ncpus=4:mem=512mb 230
PBS Professional 12.1 User’s Guide 225

Chapter 10 Working with PBS Jobs
No error reported by qalter:

%

10.2.1 Changing the Selection Directive

If the selection directive is altered, the job limits for any consumable resource in the directive
are also modified.

For example, if a job is queued with the following resource list:

select=2:ncpus=1:mem=5gb,

job limits are set to ncpus=2, mem=10gb.

If the select statement is altered to request:

select=3:ncpus=2:mem=6gb

then the job limits are reset to ncpus=6 and mem=18gb

10.2.2 Changing the Job-wide Limit

If the job-wide limit is modified, the corresponding resources in the selection directive are not
modified. It would be impossible to determine where to apply the changes in a compound
directive.

Reducing a job-wide limit to a new value less than the sum of the resource in the directive is
strongly discouraged. This may produce a situation where the job is aborted during execution
for exceeding its limits. The actual effect of such a modification is not specified.

A job's walltime may be altered at any time, except when the job is in the Exiting state,
regardless of the initial value.

If a job is queued, requested modifications must still fit within the queue's and server's job
resource limits. If a requested modification to a resource would exceed the queue's or server's
job resource limits, the resource request will be rejected.

Resources are modified by using the -l option, either in chunks inside of selection statements,
or in job-wide modifications using resource_name=value pairs. The selection state-
ment is of the form:

-l select=[N:]chunk[+[N:]chunk ...]

where N specifies how many of that chunk, and a chunk is of the form:

resource_name=value[:resource_name=value ...]
226 PBS Professional 12.1 User’s Guide

Working with PBS Jobs Chapter 10
Job-wide resource_name=value modifications are of the form:

-l resource_name=value[,resource_name=value ...]

It is an error to use a boolean resource as a job-wide limit.

Placement of jobs on vnodes is changed using the place statement:

-l place=modifier[:modifier]

where modifier is any combination of group, excl, exclhost, and/or one of
free|pack|scatter|vscatter.

The usage syntax for qalter is:

qalter job-resources job-list

The following examples illustrate how to use the qalter command. First we list all the jobs
of a particular user. Then we modify two attributes as shown (increasing the wall-clock time
from 20 to 25 minutes, and changing the job name from “airfoil” to “engine”):

qstat -u barry

 Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ------ ----- ------- ---- --- --- --- ---- - ----

51.south barry workq airfoil 930 -- 1 -- 0:16 R 0:01

54.south barry workq airfoil -- -- 1 -- 0:20 Q --

qalter -l walltime=20:00 -N engine 54

qstat -a 54

 Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ------ ----- ------- ---- --- --- --- ---- - ----

54.south barry workq engine -- -- 1 -- 0:25 Q --

To alter a job attribute via xpbs, first select the job(s) of interest, and the click on modify but-
ton. Doing so will bring up the Modify Job Attributes dialog box. From this window you may
set the new values for any attribute you are permitted to change. Then click on the confirm
modify button at the lower left of the window.

The qalter command can be used on job arrays, but not on subjobs or ranges of subjobs.
When used with job arrays, any job array identifiers must be enclosed in double quotes, e.g.:

qalter -l walltime=25:00 “1234[].south”
PBS Professional 12.1 User’s Guide 227

Chapter 10 Working with PBS Jobs
You cannot use the qalter command (or any other command) to alter a custom resource
which has been created to be invisible or unrequestable. See section 5.3.8, “Caveats and
Restrictions on Requesting Resources”, on page 79.

For more information, see “qalter” on page 128 of the PBS Professional Reference Guide.

10.3 Deleting Jobs

PBS provides the qdel command for deleting jobs. The qdel command deletes jobs in the
order in which their job identifiers are presented to the command. A batch job may be deleted
by its owner, a PBS operator, or a PBS administrator. Unless you are an administrator or an
operator, you can delete only your own jobs.

To delete a queued, held, running, or suspended job:

qdel <job ID>

Example:

qdel 51

qdel 1234[].server

Job array identifiers must be enclosed in double quotes.

10.3.1 Deleting Jobs with Force

You can delete a job whether or not its execution host is reachable, and whether or not it is in
the process of provisioning:

qdel -W force <job ID>

10.3.2 Deleting Finished Jobs

By default, the qdel command does not affect finished jobs. You can use the qdel -x
option to delete job histories. This option also deletes any specified jobs that are queued, run-
ning, held, suspended, finished, or moved. When you use this, you are deleting the job and its
history in one step. If you use the qdel command without the -x option, you delete the job,
but not the job history, and you cannot delete a finished job.

To delete a finished job, whether or not it was moved:

qdel -x <job ID>

If you try to delete a finished job without the -x option, you will get the following error:

qdel: Job <jobid> has finished
228 PBS Professional 12.1 User’s Guide

Working with PBS Jobs Chapter 10
10.3.3 Deleting Moved Jobs

You can use the qdel -x option to delete jobs that are queued, running, held, suspended,
finished, or moved.

To delete a job that was moved:

qdel <job ID sequence number>.<original server>

To delete a job that was moved, and then finished:

qdel -x <job ID>

10.3.4 Restricting Number of Emails

By default, mail is sent for each job or subjob you delete. Use the following option to qdel
to specify a limit on emails sent:

qdel -Wsuppress_email=<N>

See section 3.5.1.3, “Restricting Number of Job Deletion Emails”, on page 43.

10.3.5 Deleting a Job Using xpbs

To delete a job using xpbs, first select the job(s) of interest, then click the delete button.

10.4 Sending Messages to Jobs

To send a message to a job is to write a message string into one or more output files of the job.
Typically this is done to leave an informative message in the output of the job. Such messages
can be written using the qmsg command.

You can send messages to running jobs only.

The usage syntax of the qmsg command is:

qmsg [-E][-O] message_string job_identifier

Example:

qmsg -O “output file message” 54

qmsg -O “output file message” “1234[].server”

Job array identifiers must be enclosed in double quotes.
PBS Professional 12.1 User’s Guide 229

Chapter 10 Working with PBS Jobs
The -E option writes the message into the error file of the specified job(s). The -O option
writes the message into the output file of the specified job(s). If neither option is specified, the
message will be written to the error file of the job.

The first operand, message_string, is the message to be written. If the string contains
blanks, the string must be quoted. If the final character of the string is not a newline, a newline
character will be added when written to the job’s file. All remaining operands are
job_identifiers which specify the jobs to receive the message string. For example:

qmsg -E “hello to my error (.e) file” 55

qmsg -O “hello to my output (.o) file” 55

qmsg “this too will go to my error (.e) file” 55

To send a message to a job using xpbs, first select the job(s) of interest, then click the msg
button. Doing so will launch the Send Message to Job dialog box. From this window, you may
enter the message you wish to send and indicate whether it should be written to the standard
output or the standard error file of the job. Click the Send Message button to complete the pro-
cess.

10.5 Sending Signals to Jobs

You can use the qsig command to send a signal to your job. The signal is sent to all of the
job’s processes.

Usage syntax of the qsig command is:

qsig [-s signal] job_identifier

Job array job_identifiers must be enclosed in double quotes.

If the -s option is not specified, SIGTERM is sent. If the -s option is specified, it declares
which signal is sent to the job. The signal argument is either a signal name, e.g. SIGKILL, the
signal name without the SIG prefix, e.g. KILL, or an unsigned signal number, e.g. 9. The sig-
nal name SIGNULL is allowed; the server will send the signal 0 to the job which will have no
effect. Not all signal names will be recognized by qsig. If it doesn’t recognize the signal
name, try issuing the signal number instead. The request to signal a batch job will be rejected
if:

• You are not authorized to signal the job

• The job is not in the running state

• The requested signal is not supported by the execution host

• The job is exiting

• The job is provisioning
230 PBS Professional 12.1 User’s Guide

Working with PBS Jobs Chapter 10
Two special signal names, “suspend” and “resume”, (note, all lower case), are used to suspend
and resume jobs. When suspended, a job continues to occupy system resources but is not exe-
cuting and is not charged for walltime. Manager or operator privilege is required to suspend or
resume a job.

The signal TERM is useful, because it is ignored by shells, but you can trap it and do useful
things such as write out status.

The three examples below all send a signal 9 (SIGKILL) to job 34:

qsig -s SIGKILL 34

qsig -s KILL 34

If you want to trap the signal in your job script, the signal must be trapped by all of the job’s
shells.

On most UNIX systems the command “kill -l” (that’s ‘minus ell’) will list all the available
signals.

10.5.1 Using xpbs to Signal a Job

To send a signal to a job using xpbs, first select the job(s) of interest, then click the signal
button. Doing so will launch the Signal Running Job dialog box.

From this window, you may click on any of the common signals, or you may enter the signal
number or signal name you wish to send to the job. Click the Signal button to complete the
process.

10.6 Changing Order of Jobs

PBS provides the qorder command to change the order of two jobs, within or across
queues. To order two jobs is to exchange the jobs’ positions in the queue or queues in which
the jobs reside. If job1 is at position 3 in queue A and job2 is at position 4 in queue B, qorder-
ing them will result in job1 being in position 4 in queue B and job2 being in position 3 in
queue A.

No attribute of the job (such as Priority) is changed. The impact of changing the order within
the queue(s) is dependent on local job scheduling policy; contact your systems administrator
for details.

Usage of the qorder command is:

qorder job_identifier1 job_identifier2

Job array identifiers must be enclosed in double quotes.
PBS Professional 12.1 User’s Guide 231

Chapter 10 Working with PBS Jobs
Both operands are job_identifiers which specify the jobs to be exchanged.

qstat -u bob

 Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ------ ----- ------- ---- --- --- --- ---- - ----

54.south bob workq twinkie -- -- 1 -- 0:20 Q --

63[].south bob workq airfoil -- -- 1 -- 0:13 Q --

qorder 54 “63[]”

qstat -u bob

 Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ------ ----- ------- ---- --- --- --- ---- - ----

63[].south bob workq airfoil -- -- 1 -- 0:13 Q --

54.south bob workq twinkie -- -- 1 -- 0:20 Q --

To change the order of two jobs using xpbs, select the two jobs, and then click the order but-
ton.

10.6.1 Restrictions

• The two jobs must be located at the same Server, and both jobs must be owned by you.
However, a PBS Manager or Operator can exchange any jobs.

• A job in the running state cannot be reordered.

• The qorder command can be used with entire job arrays, but not on subjobs or ranges.
Reordering a job array changes the queue order of the job array in relation to other jobs or
job arrays in the queue.
232 PBS Professional 12.1 User’s Guide

Working with PBS Jobs Chapter 10
10.7 Moving Jobs Between Queues

PBS provides the qmove command to move jobs between different queues (even queues on
different Servers). To move a job is to remove the job from the queue in which it resides and
instantiate the job in another queue.

A job in the running state cannot be moved.

The usage syntax of the qmove command is:

qmove destination job_identifier(s)

Job array job_identifiers must be enclosed in double quotes.

The first operand is the new destination for

queue

@server

queue@server

If the destination operand describes only a queue, then qmove will move jobs into the queue
of the specified name at the job’s current Server. If the destination operand describes only a
server, then qmove will move jobs into the default queue at that server. If the destination
operand describes both a queue and a server, then qmove will move the jobs into the speci-
fied queue at the specified server. All following operands are job_identifiers which specify the
jobs to be moved to the new destination.

To move jobs between queues or between Servers using xpbs, select the job(s) of interest,
and then click the move button. Doing so will launch the Move Job dialog box from which
you can select the queue and/or server to which you want the job(s) moved.

The qmove command can only be used with job array objects, not with subjobs or ranges.
Job arrays can only be moved from one server to another if they are in the ‘Q’, ‘H’, or ‘W’
states, and only if there are no running subjobs. The state of the job array object is preserved
in the move. The job array will run to completion on the new server.

As with jobs, a qstat on the server from which the job array was moved will not show the
job array. A qstat on the job array object will be redirected to the new server.

The subjob accounting records will be split between the two servers.
PBS Professional 12.1 User’s Guide 233

Chapter 10 Working with PBS Jobs
234 PBS Professional 12.1 User’s Guide

Chapter 11
Checking Job & System Status

11.1 Viewing Job Status

You can use the qstat command to view job information in the following formats:

• Basic format: minimal summary of jobs

• Alternate format: intermediate listing of job information

• Long format: shows all information about jobs

You can see only the information for which you have the required privilege.

We discuss each format in the following sections. See “qstat” on page 194 of the PBS Profes-
sional Reference Guide.

By default, qstat displays information for queued or running jobs only. However, you can
tell qstat to display information for all jobs, whether they are running, queued, finished, or
moved; we cover this in this chapter. Job history is kept for a period defined by your adminis-
trator.
PBS Professional 12.1 User’s Guide 235

Chapter 11 Checking Job & System Status
Summary of usage:

qstat [-J] [-p] [-t] [-x] [[job_identifier | destination] ...]

qstat -f [-J] [-p] [-t] [-x] [[job_identifier | destination] ...]

qstat [-a [-w] | -H | -i | -r] [-G|-M] [-J] [-n [-1][-w]] [-s [-1][-w]] [-t] [-T [-w]] [-u user]
[[job_id | destination] ...]

qstat -Q [-f] [destination...]

qstat -q [-G|-M] [destination...]

qstat -B [-f] [server_name...]

qstat --version

11.1.1 Specifying Jobs to View

You can specify that you want information for a job identifier, a list of job identifiers, or all of
the jobs at a destination.

To specify a job identifier, it must be in the following form:

sequence_number[.server_name][@server]

where sequence_number.server_name is the job identifier assigned at submission. If you do
not specify.server_name, the default server is used. If @server is supplied, the request will be
for the job identifier currently at that server.

If you specify a destination identifier, it takes one of the following three forms:

queue

@server

queue@server

If you specify queue, the request is for status of all jobs in that queue at the default server.

If you use the @server form, the request is for status of all jobs at that server.

If you specify a full destination identifier, queue@server, the request is for status of all jobs in
the named queue at the named server.

11.1.2 Viewing Basic Job Status

You can use the qstat command to view basic job status, in the default format.
236 PBS Professional 12.1 User’s Guide

Checking Job & System Status Chapter 11
Syntax for simple form and with options:

qstat

qstat [-p] [-J] [-t] [-x] [[job_identifier | destination] ...]

The default display shows the following information:

• The job identifier assigned by PBS

• The job name given by the submitter

• The job owner

• The CPU time used

• The job state; see “Job States” on page 407 of the PBS Professional Reference Guide.

• The queue in which the job resides

The following example illustrates the default display of qstat.

qstat

Job id Name User Time Use S Queue

--------- ----------- ----------- -------- - -----

16.south aims14 user1 0 H workq

18.south aims14 user1 0 W workq

26.south airfoil barry 00:21:03 R workq

27.south airfoil barry 21:09:12 R workq

28.south myjob user1 0 Q workq

29.south tns3d susan 0 Q workq

30.south airfoil barry 0 Q workq

31.south seq_35_3 donald 0 Q workq

11.1.3 Viewing Job Status in Alternate Format

You can use the qstat command to view more detail than the basic job information, in the
alternate format.

Syntax for simple form and with options:

qstat -a

qstat -a [-w] | -H | -i | -r [-G | -M] [-J] [-n [-1][-w]] [-s [-1] [-w]] [-t] [-T [-w]] [-u
user_list] [[job_identifier | destination] ...]
PBS Professional 12.1 User’s Guide 237

Chapter 11 Checking Job & System Status
The alternate display shows the following fields:

• Job ID

• Job owner

• Queue in which job resides

• Job name

• Session ID (only appears when job is running)

• Number of chunks or vnodes requested

• Number of CPUs requested

• Amount of memory requested

• Amount of CPU time requested, if CPU time requested; if not, amount of wall clock time
requested

• State of job

• Amount of CPU time elapsed, if CPU time requested; if not, amount of wall clock time
elapsed

qstat -a

 Req'd Elap

Job ID User Queue Jobname Ses NDS TSK Mem Time S Time

-------- ------ ----- ------- --- --- --- --- ---- - ----

16.south user1 workq aims14 -- -- 1 -- 0:01 H --

18.south user1 workq aims14 -- -- 1 -- 0:01 W --

51.south barry workq airfoil 930 -- 1 -- 0:13 R 0:01

52.south user1 workq myjob -- -- 1 -- 0:10 Q --

53.south susan workq tns3d -- -- 1 -- 0:20 Q --

54.south barry workq airfoil -- -- 1 -- 0:13 Q --

55.south donald workq seq_35_ -- -- 1 -- 2:00 Q --

11.1.3.1 Display Size in Gigabytes

The “-G” option to qstat displays all jobs at the requested or default server using the alter-
native display, showing all size information in gigabytes (GB) rather than the default of small-
est displayable units. Note that if the size specified is less than 1 GB, then the amount if
rounded up to 1 GB. For example:

qstat –G
238 PBS Professional 12.1 User’s Guide

Checking Job & System Status Chapter 11
host1:

 Req’d Req’d Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

--------- ----- ----- ------- ---- --- --- ----- ----- - -----

43.host1 user1 workq STDIN 4693 1 1 -- -- R 00:05

44[].host1 user1 workq STDIN -- 1 1 -- -- Q --

45.host1 user1 workq STDIN -- 1 1 1gb -- Q --

11.1.3.2 Display Size in Megawords

The “-M” option to qstat displays all jobs at the requested (or default) Server using the
alternative display, showing all size information in megawords (MW) rather than the default
of smallest displayable units. A word is considered to be 8 bytes. For example:

qstat –M

host1:

 Req’d Req’d Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

---------- ----- ----- ------- ---- --- --- ----- ----- - -----

43.host1 user1 workq STDIN 4693 1 1 -- -- R 00:05

44[].host1 user1 workq STDIN -- 1 1 -- -- Q --

45.host1 user1 workq STDIN -- 1 1 25mw -- Q --

11.1.4 Viewing Job Status in Long Format

You can use the qstat command to view all of the information about a job, including values
for its attributes and resources, in the long format.

Syntax for simple form and with options:

qstat -f

qstat -f [-p] [-J] [-t] [-x] [[job_identifier | destination] ...]
PBS Professional 12.1 User’s Guide 239

Chapter 11 Checking Job & System Status
The long format shows the following fields, including job attributes. See “Job Attributes” on
page 374 of the PBS Professional Reference Guide for a description of attributes:

qstat -f 13

Job Id: 13.host1

 Job_Name = STDIN

 Job_Owner = user1@host2

 resources_used.cpupercent = 0

 resources_used.cput = 00:00:00

 resources_used.mem = 2408kb

 resources_used.ncpus = 1

 resources_used.vmem = 12392kb

 resources_used.walltime = 00:01:31

 job_state = R

 queue = workq

 server = host1

 Checkpoint = u

 ctime = Thu Apr 2 12:07:05 2010

 Error_Path = host2:/home/user1/STDIN.e13

 exec_host = host2/0

 exec_vnode = (host3:ncpus=1)

 Hold_Types = n

 Join_Path = n

 Keep_Files = n

 Mail_Points = a

 mtime = Thu Apr 2 12:07:07 2010

 Output_Path = host2:/home/user1/STDIN.o13

 Priority = 0

 qtime = Thu Apr 2 12:07:05 2010

 Rerunable = True

 Resource_List.ncpus = 1

 Resource_List.nodect = 1

 Resource_List.place = free

 Resource_List.select = host=host3

 stime = Thu Apr 2 12:07:08 2010

 session_id = 32704

 jobdir = /home/user1
240 PBS Professional 12.1 User’s Guide

Checking Job & System Status Chapter 11
 substate = 42

 Variable_List = PBS_O_HOME=/home/user1,PBS_O_LANG=en_US.UTF-8,

 PBS_O_LOGNAME=user1,

 PBS_O_PATH=/opt/gnome/sbin:/root/bin:/usr/local/bin:/usr/bin:/usr/
X11R

 6/bin:/bin:/usr/games:/opt/gnome/bin:/opt/kde3/bin:/usr/lib/mit/
bin:/us

 r/lib/mit/sbin,PBS_O_MAIL=/var/mail/root,PBS_O_SHELL=/bin/bash,

 PBS_O_HOST=host2,PBS_O_WORKDIR=/home/user1,PBS_O_SYSTEM=Linux,

 PBS_O_QUEUE=workq

 comment = Job run at Thu Apr 02 at 12:07 on (host3:ncpus=1)

 alt_id = <dom0:JobID xmlns:dom0="http://schemas.microsoft.com/
HPCS2008/hpcb

 p">149</dom0:JobID>

 etime = Thu Apr 2 12:07:05 2010

 Submit_arguments = -lselect=host=host3 -- ping -n 100 127.0.0.1

 executable = <jsdl-hpcpa:Executable>ping</jsdl-hpcpa:Executable>

 argument_list = <jsdl-hpcpa:Argument>-n</jsdl-hpcpa:Argument><jsdl-
hpcpa:Ar

 gument>100</jsdl-hpcpa:Argument><jsdl-hpcpa:Argument>127.0.0.1</
jsdl-hp

 cpa:Argument>

11.1.5 Listing Jobs by User

The “-u” option to qstat displays jobs owned by any of a list of user names you specify.

Syntax:

qstat -u user_name[@host][,user_name[@host],...]
PBS Professional 12.1 User’s Guide 241

Chapter 11 Checking Job & System Status
Host names are not required, and may be “wild carded” on the left end, e.g. “*.mydo-
main.com”. user_name without a “@host” is equivalent to “user_name@*”, that is at any
host.

qstat -u user1

 Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ------ ----- ------- ---- --- --- --- ---- - ----

16.south user1 workq aims14 -- -- 1 -- 0:01 H --

18.south user1 workq aims14 -- -- 1 -- 0:01 W --

52.south user1 workq my_job -- -- 1 -- 0:10 Q --

qstat -u user1,barry

 Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ------ ----- ------- ---- --- --- --- ---- - ----

51.south barry workq airfoil 930 -- 1 -- 0:13 R 0:01

52.south user1 workq my_job -- -- 1 -- 0:10 Q --

54.south barry workq airfoil -- -- 1 -- 0:13 Q --

11.1.6 Listing Running Jobs

The “-r” option to qstat displays the status of all running jobs at the (optionally specified)
PBS server. Running jobs include those that are running and suspended. One line of output is
generated for each job reported, and the information is presented in the alternative display.
For example:

qstat –r

host1:

 Req’d Req’d Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ----- ----- ------- ---- --- --- ----- ----- - -----

43.host1 user1 workq STDIN 4693 1 1 -- -- R 00:00
242 PBS Professional 12.1 User’s Guide

Checking Job & System Status Chapter 11
11.1.7 Listing Non-Running Jobs

The “-i” option to qstat displays the status of all non-running jobs at the (optionally spec-
ified) PBS server. Non-running jobs include those that are queued, held, and waiting. One line
of output is generated for each job reported, and the information is presented in the alternative
display (see description above). For example:

qstat –i

host1:

 Req’d Req’d Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

---------- ----- ----- ------- ---- --- --- ----- ----- - -----

44[].host1 user1 workq STDIN -- 1 1 -- -- Q --

11.1.8 Listing Hosts Assigned to Jobs

The “-n” option to qstat displays the hosts allocated to any running job at the (optionally
specified) PBS Server, in addition to the other information presented in the alternative display.
The host information is printed immediately below the job (see job 51 in the example below),
and includes the host name and number of virtual processors assigned to the job (i.e.
“south/0”, where “south” is the host name, followed by the virtual processor(s)
assigned.). A text string of “--” is printed for non-running jobs. Notice the differences between
the queued and running jobs in the example below:

qstat -n

 Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ------ ----- ------- ---- --- --- --- ---- - ----

16.south user1 workq aims14 -- -- 1 -- 0:01 H --

 --

18.south user1 workq aims14 -- -- 1 -- 0:01 W --

 --

51.south barry workq airfoil 930 -- 1 -- 0:13 R

 0:01 south/0

52.south user1 workq my_job -- -- 1 -- 0:10 Q --

 --
PBS Professional 12.1 User’s Guide 243

Chapter 11 Checking Job & System Status
11.1.9 Displaying Job Comments

The “-s” option to qstat displays the job comments, in addition to the other information
presented in the alternative display. The job comment is printed immediately below the job.
By default the job comment is updated by the Scheduler with the reason why a given job is
not running, or when the job began executing. A text string of “--” is printed for jobs whose
comment has not yet been set. The example below illustrates the different type of messages
that may be displayed:

qstat -s

 Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ----- ----- ------- ---- --- --- --- ---- - ----

16.south user1 workq aims14 -- -- 1 -- 0:01 H --

 Job held by user1 on Wed Aug 22 13:06:11 2004

18.south user1 workq aims14 -- -- 1 -- 0:01 W --

 Waiting on user requested start time

51.south barry workq airfoil 930 -- 1 -- 0:13 R 0:01

 Job run on host south - started Thu Aug 23 at 10:56

52.south user1 workq my_job -- -- 1 -- 0:10 Q --

 Not Running: No available resources on nodes

57.south susan workq solver -- -- 2 -- 0:20 Q --

 --

11.1.10 Showing State of Job, Job Array or Subjob

The “-t” option to qstat will show the state of a job, a job array object, and all non-X sub-
jobs.

The “-J” option to qstat will show only the state of job arrays.

The combination of “-J” and “-t” options to qstat will show only the state of subjobs.

For example:

qstat –t

Job ID Name User Time Use S Queue
244 PBS Professional 12.1 User’s Guide

Checking Job & System Status Chapter 11
---------- -------- ----------- -------- - -----

44[].host1 STDIN user1 0 B workq

44[1].host1 STDIN user1 00:00:00 R workq

44[2].host1 STDIN user1 0 Q workq

44[3].host1 STDIN user1 0 Q workq

qstat –J

Job ID Name User Time Use S Queue

----------- -------- ----------- -------- - -----

44[].host1 STDIN user1 0 B workq

$ qstat –Jt

Job ID Name User Time Use S Queue

----------- -------- ----------- -------- - -----

44[1].host1 STDIN user1 00:00:00 R workq

44[2].host1 STDIN user1 0 Q workq

44[3].host1 STDIN user1 0 Q workq

11.1.11 Printing Job Array Percentage Completed

The “-p” option to qstat prints the default display, with a column for Percentage Com-
pleted. For a job array, this is the number of subjobs completed and deleted, divided by the
total number of subjobs. For example:

qstat –p

Job ID Name User % done S Queue

------------- -------- ----------- -------- - -----

44[].host1 STDIN user1 40 B workq
PBS Professional 12.1 User’s Guide 245

Chapter 11 Checking Job & System Status
11.1.12 Viewing Job Start Time

There are two ways you can find the job’s start time. If the job is still running, you can do a
qstat -f and look for the stime attribute. If the job has finished, you look in the account-
ing log for the S record for the job. For an array job, only the S record is available; array jobs
do not have a value for the stime attribute.

11.1.13 Viewing Estimated Start Times For Jobs

You can view the estimated start times and vnodes of jobs using the qstat command. If you
use the -T option to qstat when viewing job information, the Elap Time field is replaced
with the Est Start field. Running jobs are shown above queued jobs.

If the estimated start time or vnode information is invisible to unprivileged users, no esti-
mated start time or vnode information is available via qstat.

Example output:

qstat -T

 Req'd Req'd Est

Job ID Username Queue Jobname SessID NDS TSK Memory Time S Start

------- -------- ----- -------- ----- --- --- ------ ----- - -----

5.host1 user1 workq foojob 12345 1 1 128mb 00:10 R --

9.host1 user1 workq foojob -- 1 1 128mb 00:10 Q 11:30

10.host1 user1 workq foojob -- 1 1 128mb 00:10 Q Tu 15

7.host1 user1 workq foojob -- 1 1 128mb 00:10 Q Jul

8.host1 user1 workq foojob -- 1 1 128mb 00:10 Q 2010

11.host1 user1 workq foojob -- 1 1 128mb 00:10 Q >5yrs

13.host1 user1 workq foojob -- 1 1 128mb 00:10 Q --

If the start time for a job cannot be estimated, the start time behaves as if it is unset. For
qstat -T, the start time appears as a question mark (“?”). for qstat -f, the start time
appears as a time in the past.
246 PBS Professional 12.1 User’s Guide

Checking Job & System Status Chapter 11
11.1.13.1 Why Does Estimated Start Time Change?

The estimated start time for your job may change for the following reasons:

• Changes to the system, such as vnodes going down, or the administrator offlining vnodes

• A higher priority job coming into the system, or a shift in priority of the existing jobs

11.1.14 Viewing Job Status in Wide Format

The –w qstat option displays job status in wide format. The total width of the display is
extended from 80 characters to 120 characters. The Job ID column can be up to 30 characters
wide, while the Username, Queue, and Jobname column can be up to 15 characters wide. The
SessID column can be up to eight characters wide, and the NDS column can be up to four
characters wide.

Note: You can use this option only with the -a, -n, or -s qstat options.

11.1.15 Viewing Information for Finished and Moved Jobs

You can view information for finished and moved jobs in the same way as for queued and run-
ning jobs, as long as the job history is still being stored by PBS.

The -x option to the qstat command allows you to see information for all jobs, whether
they are running, queued, finished or moved. This information is presented in standard for-
mat.

You can view the history for selected sets of jobs:

UNIX/Linux:

qstat -fx `qselect -x -s “MF”`

Windows:

for /F "usebackq" %%j in (`"\Program Files\ PBSPro\ exec\ bin\qselect" -x
-s MF`)

do ("\Program Files\PBS Pro\exec\bin\qstat" -fx %%j)

11.1.15.1 Getting Information on Jobs Moved to Another Server

If your job is running at another server, you can use the qstat command to see its status. If
your site is using peer scheduling, your job may be moved to a server that is not your default
server. In this case, to see information on your job, you can use any of the following methods:

• Use qstat -x to see information about all jobs, whether running, queued, finished, or
PBS Professional 12.1 User’s Guide 247

Chapter 11 Checking Job & System Status
moved; you can specify job IDs

• Give the job ID as an argument to qstat. If you use only “qstat”, your job will not
appear to exist. For example: you submit a job to ServerA, and it returns the job ID as
“123.ServerA”. Then 123.ServerA is moved to ServerB. In this case, use
qstat 123

or

qstat 123.ServerA

to get information about your job. ServerA will query ServerB for the information. To
list all jobs at ServerB, you can use:

qstat @ServerB

If you use “qstat” without the job ID, the job will not appear to exist.

11.1.15.2 Job History In Standard Format

You can use the -x option to the qstat command to see information for finished, moved,
queued, and running jobs, in standard format.

Usage:

qstat -x

Displays information for queued, running, finished, and moved jobs, in standard format.

qstat -x <job ID>

Displays information for a job, regardless of its state, in standard format.

Example 11-1: Showing finished and moved jobs with queued and running jobs:

qstat -x

Job id Name User Time Use S Queue

------------- ----------- ------ ------- --- ------

101.server1 STDIN user1 00:00:00 F workq

102.server1 STDIN user1 00:00:00 M destq@server2

103.server1 STDIN user1 00:00:00 R workq

104.server1 STDIN user1 00:00:00 Q workq

To see status for jobs, job arrays and subjobs that are queued, running, finished, and moved,
use qstat -xt.

To see status for job arrays that are queued, running, finished, or moved, use qstat -xJ.
248 PBS Professional 12.1 User’s Guide

Checking Job & System Status Chapter 11
When information for a moved job is displayed, the destination queue and server are shown as
<queue>@<server>.

Example 11-2: qstat -x output for moved job: destination queue is destq, and destina-
tion server is server2.

Job id Name User Time Use S Queue

---------------- ----------- ----- ------- --- ------

101.sequoia STDIN user1 00:00:00 F workq

102.sequoia STDIN user1 00:00:00 M destq@server2

103.sequoia STDIN user1 00:00:00 R workq

Example 11-3: Viewing moved job:

 - There are three servers with hostnames ServerA, ServerB, and ServerC

 - User1 submits job 123 to ServerA.

 - After some time, User1 moves the job to ServerB.

 - After more time, the administrator moves the job to QueueC at ServerC.

This means:

 - The qstat command will show QueueC@ServerC for job 123.

11.1.15.3 Job History In Alternate Format

You can use the -H option to the qstat command to see job history for finished or moved
jobs in alternate format. This does not display running or queued jobs.

Usage:

qstat -H

Displays information for finished or moved jobs, in alternate format

qstat -H job identifier

Displays information for that job in alternate format, whether or not it is finished or
moved

qstat -H destination

Displays information for finished or moved jobs at that destination

Example 11-4: Job history in alternate format:

qstat -H

 Req'd Req'd Elap
PBS Professional 12.1 User’s Guide 249

Chapter 11 Checking Job & System Status
Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time

------ -------- ---- ------- ------ --- --- ------ ---- -- -----

101.S1 user1 workq STDIN 5168 1 1 -- -- F 00:00

102.S1 user1 Q1@S2 STDIN -- 1 2 -- -- M --

To see alternate-format status for jobs, job arrays and subjobs that are finished and moved, use
qstat -Ht.

To see alternate-format status for job arrays that are finished or moved, use qstat -HJ.

The -H option is incompatible with the -a, -i and -r options.

11.1.16 Caveats for Job Information

• MoM periodically polls jobs for usage by the jobs running on her host, collects the
results, and reports this to the server. When a job exits, she polls again to get the final
tally of usage for that job.

For example, MoM polls the running jobs at times T1, T2, T4, T8, T16, T24, and so on.

The output shown by a qstat during the window of time between T8 and T16 shows the
resource usage up to T8.

If the qstat is done at T17, the output shows usage up through T16. If the job ends at
T20, the accounting log (and the final log message, and the email to you if "qsub -me"
was used in job submission) contains usage through T20.

• The final report does not include the epilogue. The time required for the epilogue is
treated as system overhead.

• The order in which jobs are displayed is undefined.

11.2 Viewing Server Status

To see server information in default format:

qstat -B [server_name ...]

To see server information in long format:

qstat -B -f [server_name ...]
250 PBS Professional 12.1 User’s Guide

Checking Job & System Status Chapter 11
11.2.1 Viewing Server Information in Default Format

The “-B” option to qstat displays the status of the specified PBS server. One line of output
is generated for each Server queried. The three letter abbreviations correspond to various job
limits and counts as follows: Maximum, Total, Queued, Running, Held, Waiting, Transiting,
and Exiting. The last column gives the status of the Server itself: active, idle, or scheduling.

qstat -B

Server Max Tot Que Run Hld Wat Trn Ext Status

----------- --- ---- ---- ---- ---- ---- ---- ---- ------

fast.domain 0 14 13 1 0 0 0 0 Active

11.2.2 Viewing Server Information in Long Format

When querying jobs, servers, or queues, you can add the “-f” option to qstat to change the
display to the full or long display. For example, the Server status shown above would be
expanded using “-f” as shown below:

qstat -Bf

Server: fast.mydomain.com

server_state = Active

scheduling = True

total_jobs = 14

state_count = Transit:0 Queued:13 Held:0 Waiting:0

Running:1 Exiting:0

managers = user1@fast.mydomain.com

default_queue = workq

log_events = 511

mail_from = adm

query_other_jobs = True

resources_available.mem = 64mb

resources_available.ncpus = 2

resources_default.ncpus = 1

resources_assigned.ncpus = 1

resources_assigned.nodect = 1

scheduler_iteration = 600

pbs_version = PBSPro_12.1.41640
PBS Professional 12.1 User’s Guide 251

Chapter 11 Checking Job & System Status
11.3 Checking Queue Status

To view queue information in default format:

qstat -Q [destination ...]

To view queue information in alternate format:

qstat -q [-G | -M] [destination ...]

To view queue information in long format:

qstat -Q -f [destination ...]

If you specify a destination identifier, it takes one of the following three forms:

queue

@server

queue@server

If you specify queue, the request is for status of that queue at the default server.

If you use the @server form, the request is for status of all queues at that server.

If you specify a full destination identifier, queue@server, the request is for status of the
named queue at the named server.

11.3.1 Viewing Queue Information in Default Format

The “-Q” option to qstat displays the status of specified queues at the (optionally specified)
PBS server. One line of output is generated for each queue queried.

qstat -Q

Queue Max Tot Ena Str Que Run Hld Wat Trn Ext Type

----- --- --- --- --- --- --- --- --- --- --- ---------

workq 0 10 yes yes 7 1 1 1 0 0 Execution
252 PBS Professional 12.1 User’s Guide

Checking Job & System Status Chapter 11
The columns show the following for each queue:

• Queue Queue name

• Max Maximum number of jobs allowed to run concurrently in the queue

• Tot Total number of jobs in the queue

• Ena Whether the queue is enabled or disabled

• Str Whether the queue is started or stopped

• Que Number of queued jobs

• Run Number of running jobs

• Hld Number of held jobs

• Wat Number of waiting jobs

• Trn Number of jobs being moved (transiting)

• Ext Number of exiting jobs

• Type Type of queue: execution or routing

11.3.2 Viewing Queue Information in Long Format

Use the long format to see the value for each queue attribute:

qstat -Qf

Queue: workq

queue_type = Execution

total_jobs = 10

state_count = Transit:0 Queued:7 Held:1 Waiting:1

Running:1 Exiting:0

resources_assigned.ncpus = 1

hasnodes = False

enabled = True

started = True
PBS Professional 12.1 User’s Guide 253

Chapter 11 Checking Job & System Status
11.3.3 Displaying Queue Limits in Alternate Format

The “-q” option to qstat displays any limits set on the requested (or default) queues. Since
PBS is shipped with no queue limits set, any visible limits will be site-specific. The limits are
listed in the format shown below.

qstat -q

server: south

Queue Memory CPU Time Walltime Node Run Que Lm State

------ ------ -------- -------- ---- --- --- -- -----

workq -- -- -- -- 1 8 -- E R

11.3.4 Caveats for the qstat Command

When you use the -f option to qstat to display attributes of jobs, queues, or servers,
attributes that are unset may not be displayed. If you do not see an attribute, it is unset.

11.4 Viewing Job & System Status with xpbs

The main display of xpbs shows a brief listing of all selected Servers, all queues on those
Servers, and any jobs in those queues that match the selection criteria (discussed below).
Servers are listed in the HOST panel near the top of the display.

To view detailed information about a given Server (i.e. similar to that produced by “qstat
-fB”) select the Server in question, then click the “Detail” button. Likewise, for details on a
given queue (i.e. similar to that produced by “qstat -fQ”) select the queue in question,
then click its corresponding “Detail” button. The same applies for jobs as well (i.e. “qstat
-f”). You can view detailed information on any displayed job by selecting it, and then click-
ing on the “Detail” button. Note that the list of jobs displayed will be dependent upon the
Selection Criteria currently selected. This is discussed in the xpbs portion of the next section.

11.5 Selecting a List of Jobs

The qselect command provides a method to list the job identifier of those jobs, job arrays
or subjobs which meet a list of selection criteria. Jobs are selected from those owned by a sin-
gle server. The qselect command writes to standard output a list of zero or more job identi-
fiers which meet the criteria specified by the options. Each option acts as a filter restricting
254 PBS Professional 12.1 User’s Guide

Checking Job & System Status Chapter 11
the number of jobs which might be listed. With no options, the qselect command will list
all jobs at the Server which you are authorized to list (query status of). The -u option may be
used to limit the selection to jobs owned by you or other specified users.

For a description of the qselect command, see “qselect” on page 183 of the PBS Profes-
sional Reference Guide.

For example, say you want to list all jobs owned by user “barry” that requested more than 16
CPUs. You could use the following qselect command syntax:

qselect -u barry -l ncpus.gt.16

121.south

133.south

154.south

Notice that what is returned is the job identifiers of jobs that match the selection criteria. This
may or may not be enough information for your purposes. Many users will use shell syntax to
pass the list of job identifiers directly into qstat for viewing purposes, as shown in the next
example (necessarily different between UNIX and Windows).

UNIX:

qstat -a ‘ qselect -u barry -l ncpus.gt.16 ‘

 Req'd Req’d Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ----- ----- ------- ---- --- --- --- ---- - ----

121.south barry workq airfoil -- -- 32 -- 0:01 H --

133.south barry workq trialx -- -- 20 -- 0:01 W --

154.south barry workq airfoil 930 -- 32 -- 1:30 R 0:32

Windows (type the following at the cmd prompt, all on one line):

for /F "usebackq" %j in (`qselect -u barry -l ncpus.gt.16`) do

(qstat -a %j)

121.south

133.south

154.south

Note: This technique of using the output of the qselect command as input to qstat can
also be used to supply input to other PBS commands as well.
PBS Professional 12.1 User’s Guide 255

Chapter 11 Checking Job & System Status
11.5.1 Listing Job Identifiers of Finished and Moved Jobs

You can list identifiers of finished and moved jobs in the same way as for queued and running
jobs, as long as the job history is still being preserved.

The -x option to the qselect command allows you to list job identifiers for all jobs, whether
they are running, queued, finished or moved. The -H option to the qselect command
allows you to list job identifiers for finished or moved jobs only.

11.5.2 Listing Jobs by Time Attributes

You can use the qselect command to list queued, running, finished and moved jobs, job
arrays, and subjobs according to their time attributes. The -t option to the qselect com-
mand allows you to specify how you want to select based on time attributes. You can also use
the -t option twice to bracket a time period.

Example 11-5: Select jobs with end time between noon and 3PM.

qselect -te.gt.09251200 -te.lt.09251500

Example 11-6: Select finished and moved jobs with start time between noon and 3PM.

qselect -x -s “MF” -ts.gt.09251200 -ts.lt.09251500

Example 11-7: Select all jobs with creation time between noon and 3PM

qselect -x -tc.gt.09251200 -tc.lt.09251500

Example 11-8: Select all jobs including finished and moved jobs with qtime of 2.30PM
(default relation is .eq.)

qselect -x -tq09251430

11.5.3 Selecting Jobs Using xpbs

The xpbs command provides a graphical means of specifying job selection criteria, offering
the flexibility of the qselect command in a point and click interface. Above the JOBS
panel in the main xpbs display is the Other Criteria button. Clicking it will bring up a menu
that lets you choose and select any job selection criteria you wish.

The example below shows a user clicking on the Other Criteria button, then selecting Job
States, to reveal that all job states are currently selected. Clicking on any of these job states
would remove that state from the selection criteria.
256 PBS Professional 12.1 User’s Guide

Checking Job & System Status Chapter 11
You may specify as many or as few selection criteria as you wish. When you have completed
your selection, click on the Select Jobs button above the HOSTS panel to have xpbs refresh
the display with the jobs that match your selection criteria. The selected criteria will remain in
effect until you change them again. If you exit xpbs, you will be prompted if you wish to
save your configuration information; this includes the job selection criteria.

11.6 Tracking Job Progress Using xpbs
TrackJob Feature

The xpbs command includes a feature that allows you to track the progress of your jobs.
When you enable the Track Job feature, xpbs will monitor your jobs, looking for the output
files that signal completion of the job. The Track Job button will flash red on the xpbs main
display, and if you then click it, xpbs will display a list of all completed jobs (that you were
previously tracking). Selecting one of those jobs will launch a window containing the stan-
dard output and standard error files associated with the job.
PBS Professional 12.1 User’s Guide 257

Chapter 11 Checking Job & System Status
To enable xpbs job tracking, click on the Track Job button at the top center of the main
xpbs display. Doing so will bring up the Track Job dialog box shown below.

From this window you can name the users whose jobs you wish to monitor. You also need to
specify where you expect the output files to be: either local or remote (e.g. will the files be
retained on the Server host, or did you request them to be delivered to another host?). Next,
click the start/reset tracking button and then the close window button. Note that you can dis-
able job tracking at any time by clicking the Track Job button on the main xpbs display, and
then clicking the stop tracking button.

The Track Job feature is not available on Windows.
258 PBS Professional 12.1 User’s Guide

Checking Job & System Status Chapter 11
11.7 Checking License Availability

You can check to see where licenses are available. You can do either of the following:

• Display license information for the current host:
qstat -Bf

• Display resources available (including licenses) on all hosts:
qmgr

Qmgr: print node @default

When looking at the server’s license_count attribute, use the sum of the Avail_Global and
Avail_Local values.
PBS Professional 12.1 User’s Guide 259

Chapter 11 Checking Job & System Status
260 PBS Professional 12.1 User’s Guide

Chapter 12
Submitting Cray Jobs

12.1 Introduction

You can submit jobs that are designed to run on the Cray, using the PBS select and place syn-
tax.

12.2 PBS Jobs on the Cray

When you submit a job that is designed to run on the Cray, you create a job script that con-
tains the same aprun command as a non-PBS job, but submit the job using the PBS select
and place syntax. You can translate the mpp* syntax into select and place syntax using the
rules described in section 12.3.2, “Automatic Translation of mpp* Resource Requests”, on
page 265.

You can submit a PBS job using mpp* syntax, but mpp* syntax is deprecated.

If a job does not request a login node, one is chosen for it. A login node is assigned to each
PBS job that runs on the Cray. The job script runs on this login node.

Jobs requesting a vntype of cray_compute are expected to have an aprun in the job script
to launch the job on the compute nodes. PBS does not verify that the job script contains an
aprun statement.
PBS Professional 12.1 User’s Guide 261

Chapter 12 Submitting Cray Jobs
12.3 PBS Resources for the Cray

12.3.1 Built-in and Custom Resources for the Cray

PBS provides built-in and custom resources specifically created for jobs on the Cray. The
custom resources are created by PBS to reflect Cray information such as segments or labels.
PBS also provides some built-in resources for all platforms that have specific uses on the
Cray.

12.3.1.1 Built-in Resources for All Platforms

accelerator
Indicates whether this vnode is associated with an accelerator. Host-level.
Can be requested only inside of a select statement. On Cray, this resource
exists only when there is at least one associated accelerator. On Cray, this is
set to True when there is at least one associated accelerator whose state is
UP. On Cray, set to False when all associated accelerators are in state
DOWN. Used for requesting accelerators.

Format: Boolean

Python type: bool

accelerator_memory
Indicates amount of memory for accelerator(s) associated with this vnode.
Host-level. Can be requested only inside of a select statement. On Cray,
PBS sets this resource only on vnodes with at least one accelerator whose
state is UP. For Cray, PBS sets this resource on the 0th NUMA node (the
vnode with PBScrayseg=0), and the resource is shared by other vnodes on
the compute node.

For example, on vnodeA_2_0:

resources_available.accelerator_memory=4196mb

On vnodeA_2_1:

resources_available.accelerator_memory=@vnodeA_2_0

Consumable.

Format: size

Python type: pbs.size

accelerator_model
Indicates model of accelerator(s) associated with this vnode. Host-level.
On Cray, PBS sets this resource only on vnodes with at least one accelerator
262 PBS Professional 12.1 User’s Guide

Submitting Cray Jobs Chapter 12
whose state is UP. Can be requested only inside of a select statement. Non-
consumable.

Format: String

Python type: str

naccelerators
Indicates number of accelerators on the host. Host-level. On Cray, should
not be requested for jobs; PBS does not pass the request to ALPS. On Cray,
PBS sets this resource only on vnodes whose hosts have at least one accel-
erator whose state is UP. PBS sets this resource to the number of accelera-
tors whose state is UP. For Cray, PBS sets this resource on the 0th NUMA
node (the vnode with PBScrayseg=0), and the resource is shared by other
vnodes on the compute node.

For example, on vnodeA_2_0:

resources_available.naccelerators=1

On vnodeA_2_1:

resources_available.naccelerators=@vnodeA_2_0

Can be requested only inside of a select statement, but should not be
requested.

Consumable.

Format: Long

Python type: int

nchunk
This is the number of chunks requested between plus symbols in a select
statement. For example, if the select statement is -lselect
4:ncpus=2+12:ncpus=8, the value of nchunk for the first part is 4,
and for the second part it is 12. The nchunk resource cannot be named in a
select statement; it can only be specified as a number preceding the colon,
as in the above example. When the number is omitted, nchunk is 1.

Non-consumable.

Settable by Manager and Operator; readable by all.

Format: Integer

Python type: int

Default value: 1
PBS Professional 12.1 User’s Guide 263

Chapter 12 Submitting Cray Jobs
12.3.1.2 PBS Resources for the Cray

vntype
Built in. This resource represents the type of the vnode. Automatically set
by PBS to one of two specific values for cray vnodes. Has no meaning for
non-Cray vnodes.

Non-consumable.

Format: String array

Automatically assigned values for Cray vnodes:

cray_compute

This vnode represents part of a compute node.

cray_login

This vnode represents a login node.

Default value: None

Python type: str

PBScrayhost
On CLE 2.2, this is set to “default”.

Custom resource created by PBS for the Cray. On CLE 3.0 and higher, used
to delineate a Cray system, containing ALPS, login nodes running PBS
MoMs, and compute nodes, from a separate Cray system with a separate
ALPS. Non-consumable. The value of PBScrayhost is set to the value of
mpp_host for this system.

Format: String

Default: CLE 2.2: “default”; CLE 3.0 and higher: None

PBScraylabel_<label name>
Custom resource created by PBS for the Cray. Tracks labels applied to
compute nodes. For each label on a compute node, PBS creates a custom
resource whose name is a concatenation of PBScraylabel_ and the name
of the label. PBS sets the value of the resource to True on all vnodes repre-
senting the compute node.

Format: PBScraylabel_<label name>

For example, if the label name is Blue, the name of this resource is
PBScraylabel_Blue.

Format: Boolean

Default: None
264 PBS Professional 12.1 User’s Guide

Submitting Cray Jobs Chapter 12
PBScraynid
Custom resource created by PBS for the Cray. Used to track the node ID of
the associated compute node. All vnodes representing a particular compute
node share a value for PBScraynid. Non-consumable.

The value of PBScraynid is set to the value of node_id for this compute
node.

Non-consumable.

Format: String

Default: None

PBScrayorder
Custom resource created by PBS for the Cray. Used to track the order in
which compute nodes are listed in the Cray inventory. All vnodes associ-
ated with a particular compute node share a value for PBScrayorder. Non-
consumable.

Vnodes for the first compute node listed are assigned a value of 1 for
PBScrayorder. The vnodes for each subsequent compute node listed are
assigned a value one greater than the previous value.

Do not use this resource in a resource request.

Format: Integer

Default: None

PBScrayseg
Custom resource created by PBS for the Cray. Tracks the segment ordinal
of the associated NUMA node. For the first NUMA node of a compute
host, the segment ordinal is 0, and the value of PBScrayseg for the associ-
ated vnode is 0. For the second NUMA node, the segment ordinal is 1,
PBScrayseg is 1, and so on. Non-consumable.

Format: String

Default: None

12.3.2 Automatic Translation of mpp* Resource Requests

When a PBS job or reservation is submitted using the mpp* syntax, PBS translates the mpp*
resource request into PBS select and place statements. The translation uses the following
rules:

• For each chunk on a vnode representing a compute node, the vntype resource is set to
cray_compute. (Using mpp* implies the use of compute nodes.)

• If the job requests -lvnode=<value>, the following becomes or is added to the
PBS Professional 12.1 User’s Guide 265

Chapter 12 Submitting Cray Jobs
equivalent chunk request:
:vnode=<value>

• If the job requests -lhost=<value>, the following becomes or is added to the equiva-
lent chunk request:
:host=<value>

• Translating mppwidth:

When the job requests mppwidth:

 - If mppnppn is specified, the following happen:

• nchunk (number of chunks) is set to mppwidth / mppnppn

• mpiprocs is set to mppnppn

• -lplace=scatter is added to the request

 - If mppnppn is not specified, the following happen:

• mppnppn is treated as if it is 1

• nchunk (number of chunks) is set to mppwidth

• -lplace=free is added to the request

• Translating mppnppn:

If mppnppn is not specified, it defaults to 1.

• Translating mppdepth:

If mppdepth is not specified, it defaults to 1.

• ncpus is set to mppdepth * mppnppn

• If mpphost is specified as a submit argument, PBS adds a custom resource called
PBScrayhost to the select statement, requesting the same value as for mpphost.

• The mppnodes resource is translated by PBS into the corresponding vnodes.

• When a job requests mpplabels, PBS adds a custom resource called
PBScraylabel_<label name> to each chunk that requests a vnode from the compute
node with that label. For example, if the job requests:
-l mppwidth=1,mpplabels=\”small,red\”

the translated request is:

 -l select=1: PBScraylabel_small=True:PBScraylabel_red=True

• The following table summarizes how each mpp* resource is translated into select and
266 PBS Professional 12.1 User’s Guide

Submitting Cray Jobs Chapter 12
place statements:

Table 12-1: Mapping mpp* Resources to select and place

mpp* Resource
Resulting PBS

Resource
How Value of PBS

Resource is Derived

mpparch arch arch=mpparch

mppdepth*mppnppn

(mppdepth defaults to 1 if
not specified.)

ncpus ncpus = mppdepth*mpp-

nppn

mpphost PBScrayhost PBScrayhost=mpphost

mpplabels, for example
mpplabels =\”red,small\”

PBScraylabel_red
=True

PBScraylabel_small
=True

PBS creates custom Bool-
ean resources named
PBScraylabel_<label>,
and sets them to True on
associated vnodes

mppmem mem mem=mppmem

mppnodes Corresponding vnodes PBS uses vnodes represent-
ing requested nodes

mppnppn

(Defaults to 1 if not speci-
fied.)

mpiprocs mpiprocs=mppnppn
PBS Professional 12.1 User’s Guide 267

Chapter 12 Submitting Cray Jobs
mppwidth mppnppn
specified

nchunk nchunk = mppwidth/mpp-

nppn

place=scatter

mpiprocs=mppnppn

Example: if mppwidth=8
and mppnppn=2,
nchunk=4

mppnppn
not specified

nchunk nchunk = mppwidth

place=free

mpiprocs not set

Example: if mppwidth=8,
nchunk=8

Table 12-1: Mapping mpp* Resources to select and place

mpp* Resource
Resulting PBS

Resource
How Value of PBS

Resource is Derived
268 PBS Professional 12.1 User’s Guide

Submitting Cray Jobs Chapter 12
12.3.2.1 Examples of Mapping mpp* Resources to select and
place

Example 12-1: You want 8 PEs. The aprun statement is the following:

aprun -n 8

The old resource request using mpp* is the following:

qsub -l mppwidth=8

The translated select and place is the following:

qsub -lselect=8:vntype=cray_compute

Example 12-2: You want 8 PEs with only one PE per compute node. The aprun statement is
the following:

aprun -n 8 -N 1

The old resource request using mpp* is the following:

qsub -lmppwidth=8,mppnppn=1

The translated select and place is the following:

qsub -lselect=8:ncpus=1:mpiprocs=1:vntype=cray_compute -lplace=scatter

Example 12-3: You want 8 PEs with 2 PEs per compute node. This equates to 4 chunks of 2
ncpus per chunk, scattered across different hosts. The aprun statement is the follow-
ing:

aprun -n 8 -N 2

The old resource request using mpp* is the following:

qsub -lmppwidth=8,mppnppn=2

The translated select and place is the following:

qsub -lselect=4:ncpus=2:mpiprocs=2:vntype=cray_compute -lplace=scatter

Example 12-4: Specifying host:

The old resource request using mpp* is the following:

qsub -lmppwidth=8,mpphost=examplehost

The translated select and place is the following:

qsub -lselect=8:PBScrayhost=examplehost

Example 12-5: Specifying labels:

The old resource request using mpp* is the following:

-l mppwidth=1,mpplabels=\”small,red\”
PBS Professional 12.1 User’s Guide 269

Chapter 12 Submitting Cray Jobs
The translated select and place is the following:

-l select=1: PBScraylabel_small=True:PBScraylabel_red=True

12.3.3 Resource Accounting

Jobs that request only compute nodes are not assigned resources from login nodes. PBS
accounting logs do not show any login node resources being used by these jobs.

Jobs that request login nodes are assigned resources from login nodes, and those resources
appear in the PBS accounting logs for these jobs.

PBS performs resource accounting on the login nodes, under the control of their MoMs.

Comprehensive System Accounting (CSA) runs on the compute nodes, under the control of
the Cray system.

12.4 Rules for Submitting Jobs on the Cray

12.4.1 Always Specify Node Type

If you want your job to run on Cray nodes, you must specify a Cray node type for your job.
You do this by requesting a value for the vntype vnode resource. On each vnode on a Cray,
the vntype resource includes one of the following values:

cray_login, for a login node

cray_compute, for a compute node

Each chunk of a Cray job that must run on a login node must request a vntype of cray_login.

Each chunk of a Cray job that must run on a compute node must request a vntype of
cray_compute.

Example 12-6: Request any login node, and two compute-node vnodes. The job is run on the
login node selected by the scheduler:

qsub -lselect=1:ncpus=2:vntype=cray_login +2:ncpus=2:vntype=cray_compute

Example 12-7: Launch a job on a particular login node by specifying the login node vnode
name first in the select line. The job script runs on the specified login node:

qsub -lselect=1:ncpus=2:vnode=login1 +2:ncpus=2:vntype=cray_compute

For a description of the vntype resource, see “Built-in Resources” on page 299 of the PBS
Professional Reference Guide.
270 PBS Professional 12.1 User’s Guide

Submitting Cray Jobs Chapter 12
12.4.2 Always Reserve Required Vnodes

Always reserve at least as many PEs as you request in your aprun statement.

12.4.3 Requesting Login Node Where Job Script Runs

If you request a login node as part of your resource request, the login node resource request
must be the first element of the select statement. The job script is run on the login node. If
you request more than one login node, the job script runs on the first login node requested.

12.4.4 Login Nodes in PBS Reservations

If the jobs that are to run in a PBS reservation require a particular login node, you must do the
following:

• The reservation must request the specific login node

• Each job that will run in the reservation must request the same login node that the reser-
vation requested

12.4.5 Specifying Number of Chunks

You specify the number of chunks by prefixing each chunk request with an integer. If not
specified, this integer defaults to 1. For example, to specify 4 chunks with 2 CPUs each, and
8 chunks with 1 CPU each:

qsub -lselect=4:ncpus=2+8:ncpus=1

You cannot request the nchunk resource.

If you request fewer chunks, the scheduling cycle is faster. See section 12.7.10, “Request
Fewer Chunks”, on page 285.

12.4.6 When Requesting Accelerators

PBS does not pass requests for the naccelerators resource to ALPS. To request accelerators
for your job, use the accelerator resource, not the naccelerators resource.

For example, you want a total of 40 PEs with 4 PEs per compute node and one accelerator per
compute node:

-lselect=10:ncpus=4:accelerator=True

See section 12.5.11, “Requesting Accelerators”, on page 277.
PBS Professional 12.1 User’s Guide 271

Chapter 12 Submitting Cray Jobs
12.4.7 Requesting mppnppn Equivalent

If your job requires the equivalent of mppnppn, you can do either of the following:

• When using select and place statements, use the translation information provided in
Table 12-1, “Mapping mpp* Resources to select and place,” on page 267, and include
-lplace=scatter in the job request.

• Include mppnppn in the qsub line (mppnppn is deprecated.)

12.4.8 Do Not Mix mpp* and select/place

Jobs cannot use both -lmpp* syntax and -lselect/-lplace syntax.

12.4.9 Specify Host for Interactive Jobs

Interactive jobs on a Cray must run on a login node. When you run an interactive job, specify
the login node as the host for the job. You can do so using a PBS directive, or the command
line. For example:

qsub -l select=host=<name of login node> -I job.sh

#PBS -l select=host=<name of login node>

See section 7.10, “Running Your Job Interactively”, on page 176.

12.5 Techniques for Submitting Cray Jobs

12.5.1 Specifying Number of PEs per NUMA Node

The Cray aprun -S option allows you to specify the number of PEs per NUMA node for
your job. PBS allows you to make the equivalent request using select and place statements.
PBS jobs on the Cray should scatter chunks across vnodes.

To calculate the select and place requirements, do the following:

• Set nchunk equal to n (the width) divided by S (the number of PEs per NUMA node):

nchunk = n/S
• Set ncpus equal to S (the number PEs per NUMA node):

ncpus=S
• Set mpiprocs equal to S (same as ncpus)
272 PBS Professional 12.1 User’s Guide

Submitting Cray Jobs Chapter 12
mpiprocs=S

Example 12-8: You want a total of 6 PEs with 2 PEs per NUMA node. The aprun command
is the following:

aprun -S 2 -n 6 myjob

The equivalent select and place statements are:

qsub -lselect=3:ncpus=2:mpiprocs=2 -lplace=vscatter

Given two compute nodes, each with two NUMA nodes, where each NUMA node has
four PEs, two PEs from each of three of the NUMA nodes are assigned to the job.

Example 12-9: To request 8 PES, with 4 PEs per NUMA node, the aprun statement is the
following:

aprun -S 4 -n 8

The equivalent select statement is the following, not including the scatter-by-vnode and
exclusive-by-host placement language:

qsub -lselect=2:ncpus=4:mpiprocs=4

12.5.1.1 Caveats For aprun -S

When you use aprun -S, you must request mpiprocs, and request the same value as for
ncpus.

12.5.2 Reserving N NUMA Nodes Per Compute Node

The Cray aprun -sn option allows you to specify the number of NUMA nodes per com-
pute node for your job. PBS allows you to make the equivalent request using select and place
statements.

To request N NUMA nodes per compute node, you place your job by requesting a resource
that specifies the number of of NUMA nodes per compute node. This resource is set up by
your administrator. We suggest that the resource is named craysn, and the value you specify
is the number of vnodes per compute node. For example, to request 2 segments per compute
node, specify a value of 2 for craysn.

To make a request equivalent to aprun -sn 3 -n 24, and match the compute node exclu-
sive behavior of the Cray, you can specify the following:

qsub -lselect=24:ncpus=1:craysn=3 -lplace=exclhost
PBS Professional 12.1 User’s Guide 273

Chapter 12 Submitting Cray Jobs
12.5.3 Reserving Specific NUMA Nodes on Each Compute
Node

The Cray aprun -sl option allows you to reserve specific NUMA nodes on the compute
nodes your job uses. PBS allows you to make the equivalent request using select and place
statements.

How you request resources depends on the number of NUMA nodes you want per compute
node, and how the administrator has set up the resource that allows you to request specific
compute nodes.

12.5.3.1 Requesting a Single NUMA Node Per Compute Node

You can request the PBScrayseg resource to request one particular NUMA node per com-
pute node. PBS automatically creates a custom string resource called PBScrayseg, and sets
the value for each vnode to be the segment ordinal for the associated NUMA node. See “Cus-
tom Cray Resources” on page 308 of the PBS Professional Reference Guide.

Example 12-10: You want 8 PEs total, using only NUMA node 1 on each compute node. The
aprun statement is the following:

aprun -sl 1 -n 8

An equivalent resource request for a PBS job is the following:

qsub -lselect=8:ncpus=1:PBScrayseg=1

See section 12.3.1, “Built-in and Custom Resources for the Cray”, on page 262.

12.5.3.2 Requesting Multiple NUMA Nodes Per Compute Node

If you want to request multiple NUMA nodes per compute node, you have choices. For
example, if your aprun statement looks like the following:

aprun -sl 0,1 -n 8

You can do any of the following:

• You can request separate chunks for each segment:
qsub -lselect=4:ncpus=1:PBScrayseg=0 +4:ncpus=1:PBScrayseg=1

• If you know about the underlying hardware, the PBS resource request can take advantage
of that. On a homogenous system with 2 NUMA nodes per compute node and 4 PEs per
NUMA node, you can use the following PBS resource request:
qsub -lselect=8:ncpus=1 -lplace=pack

• If the administrator has set up a resource that allows you to request NUMA node combi-
274 PBS Professional 12.1 User’s Guide

Submitting Cray Jobs Chapter 12
nations, called for example segmentcombo, you request a value for the resource that is
the list of vnodes you want. The equivalent select statement which uses this resource is
the following:
qsub -lselect=8:ncpus=1:segmentcombo=01 jobscript

12.5.3.3 Caveat When Using Combination or Number Resources

You must use the same resource string values as the ones set up by the administrator. “012”
is not the same as “102” or “201”.

12.5.4 Requesting Groups of Login Nodes

If you want to use groups of esLogin nodes and internal login nodes, your administrator can
set the vntype resource on these nodes to a special value, for example cray_compile.

To submit a job requesting any combination of esLogin nodes and internal login nodes, you
specify the special value for the vntype resource in your select statement. For example:

qsub -lselect=4:ncpus=1:vntype=cray_compile job

12.5.5 Using Internal Login Nodes Only

Compiling, preprocessing, and postprocessing jobs can run on internal login nodes. Internal
login nodes have a vntype value of cray_login. If you want to run a job that needs to use the
resources on internal login nodes only, you can specify vntype=cray_login in your
select statement. For example:

qsub -lselect=4:ncpus=1:vntype=cray_login job

12.5.6 Using Compute Nodes

If your job script contains an aprun launch, you must run your job on compute nodes. To
run your job on compute nodes, specify a vntype of cray_compute. For example:

lselect=2:ncpus=2:vntype=cray_compute
PBS Professional 12.1 User’s Guide 275

Chapter 12 Submitting Cray Jobs
12.5.7 Using Login and Compute Nodes

You can request both login and compute nodes for your job. You must specify the login
node(s) before the compute nodes. You can specify a vntype of cray_login for the chunks
requiring login nodes, and a vntype of cray_compute for the chunks requiring compute
nodes. For example:

qsub -lselect=1:ncpus=2:vntype=cray_login +2:ncpus=2:vntype=cray_compute

12.5.8 Requesting Specific Groups of Nodes

You can use select and place to request the groups of vnodes you want. This replaces the
behavior provided by mppnodes.

You may need to group nodes by some criteria, for example:

• Certain nodes are fast nodes

• Certain nodes share a required or useful characteristic

• Some combination of nodes gives the best performance for an application

Your administrator can set up either of the following:

• Custom Boolean resources on each vnode, which reflect how the nodes are labeled, and
allow you to request the vnodes that represent the group of nodes you want. These
resources are named PBScraylabel_<label name>, and set to True on the vnodes that
represent the labeled nodes.

Your administrator must label the groups of nodes. For example, if a node is both fast
and best for App1, it can have two labels, fast, and BestForApp1.

To request the fast nodes in this example, add the following to each chunk request:

:PBScraylabel_fast=True

• Other custom resources on each vnode, which are set to reflect the vnode’s characteris-
tics. For example, if a vnode is fast, it can have a custom string resource called “speed”,
with a value of fast on that vnode. You must ask your administrator for the name and
possible values for the resource.
276 PBS Professional 12.1 User’s Guide

Submitting Cray Jobs Chapter 12
12.5.9 Requesting Nodes in Specific Order

Your application may perform better when the ranks are laid out on specific nodes in a spe-
cific order. If you want to request vnodes so that the nodes are in a specific order, you can
specify the host for each chunk of the job. For example, if you need nodes ordered “nid0,
nid2, nid4”, you can request the following:

qsub -l select=2:ncpus=2:host=nid0 +2:ncpus=2:host=nid2
+2:ncpus=2:host=nid4

12.5.10 Requesting Interlagos Hardware

PBS allows you to specifically request (or avoid) Interlagos hardware. Your administrator
must create a Boolean resource on each vnode, and set it to True where the vnode has Interla-
gos hardware. We recommend that the Boolean is called “PBScraylabel_interlagos”.

You request or avoid this resource using PBScraylabel_interlagos=True or
PBScraylabel_interlagos=False. For example:

qsub -lselect=3:ncpus=2:PBScraylabel_interlagos=true myjob

12.5.11 Requesting Accelerators

Accelerators are associated with vnodes when those vnodes represent NUMA nodes on a host
that has at least one accelerator in state UP. PBS allows you to request vnodes with associ-
ated accelerators. PBS sets the Boolean host-level resource accelerator to True on vnodes
that have an associated accelerator. To request a vnode with an associated accelerator, include
the following in the job’s select statement:

accelerator = True
PBS Professional 12.1 User’s Guide 277

Chapter 12 Submitting Cray Jobs
12.5.11.1 Examples of Requesting Accelerators

Example 12-11: You want 30PEs and a Tesla_x2090 accelerator on each host, and the accel-
erator should have at least 4000MB, and you don't care how many hosts the job uses:

-lselect=30:ncpus=1:acclerators=True:accelerator_model=”Tesla_x2090”
:accelerator_memory=4000MB myjob

Example 12-12: You want a total of 40 PEs with 4 PEs per compute node and one accelerator
per compute node:

-lselect=10:ncpus=4:accelerator=True

Example 12-13: Your system has some compute nodes with one type of accelerator (GPU1),
and another type of compute node with a different type of accelerator (GPU2), and you
want to request 10 PEs and 1 accelerator of model “GPU1” per compute node and 4 PEs
and 1 accelerator of model “GPU2” per compute node. Your job request would look like
this:

-lselect=10:ncpus=1:accelerator=True:accelerator_model=”GPU1”
+4:ncpus=1:accelerator=True:accelerator_model=”GPU2” myjob

Do not request the naccelerators resource. This resource request is not passed to ALPS.

12.6 Viewing Cray Job Information

12.6.1 Finding Out Where Job Was Launched

To determine the internal login node where the job was launched, use the qstat -f com-
mand:

qstat -f <job ID>

Look at the exec_host line of the output. The first vnode is the login node where the job was
launched.

12.6.2 Finding Out How mpp* Request Was Translated

• To find out how the mpp* job request was translated into select and place statements, use
278 PBS Professional 12.1 User’s Guide

Submitting Cray Jobs Chapter 12
the qstat -f command:
qstat -f[x] <job ID>

Look at the Resource_List.select job attribute. The original is in the
Submit_arguments job attribute.

• To find out how the mpp* reservation request was translated into select and place state-
ments, use the pbs_rstat command:
pbs_rstat -F <reservation ID>

Look at the Resource_List attribute.

12.6.3 Viewing Original mpp* Request

To see the original mpp* request, use the qstat command:

qstat -f[x] <job ID>

The Submit_arguments field contains the original mpp* request.

12.6.4 Listing Jobs Running on Vnode

To see which jobs are running on a vnode, use the pbsnodes command:

pbsnodes -av

The jobs attribute of each vnode lists the jobs running on that vnode. Jobs launched from an
internal login node, requesting a vntype of cray_compute only, are not listed in the internal
login node’s vnode’s jobs attribute. Jobs that are actually running on a login node, which
requested a vntype of cray_login, do appear in the login node’s vnode’s jobs attribute.

12.6.4.1 Caveats When Listing Jobs

Jobs that requested a vntype of cray_compute that were launched from an internal login
node are not listed in the jobs attribute of the internal login node.
PBS Professional 12.1 User’s Guide 279

Chapter 12 Submitting Cray Jobs
12.6.4.2 Example Output

Example of pbsnodes -av output for segments 0 and 1 on the same compute node:

examplehost_8_0

Mom = exampleMom

ntype = PBS

state = free

pcpus = 6

resources_available.accelerator = True

resources_available.accelerator_memory = 4096mb

resources_available.accelerator_model = Tesla_x2090

resources_available.arch = XT

resources_available.host = examplehost_8

resources_available.mem = 8192000kb

resources_available.naccelerators = 1

resources_available.ncpus = 6

resources_available.PBScrayhost = examplehost

resources_available.PBScraynid = 8

resources_available.PBScrayorder = 1

resources_available.PBScrayseg = 0

resources_available.vnode = examplehost_8_0

resources_available.vntype = cray_compute

resources_assigned.accelerator_memory = 0kb

resources_assigned.mem = 0kb

resources_assigned.mem = 0kb

resources_assigned.naccelerators = 0

resources_assigned.ncpus = 0

resources_assigned.netwins = 0

resources_assigned.vmem = 0kb

resv_enable = True

sharing = force_exclhost

examplehost_8_1

Mom = exampleMom

ntype = PBS

state = free
280 PBS Professional 12.1 User’s Guide

Submitting Cray Jobs Chapter 12
pcpus = 6

resources_available.accelerator = True

resources_available.accelerator_memory = @examplehost_8_0

resources_available.accelerator_model = Tesla_x2090

resources_available.arch = XT

resources_available.host = examplehost_8

resources_available.mem = 8192000kb

resources_available.naccelerators = @examplehost_8_0

resources_available.ncpus = 6

resources_available.PBScrayhost = examplehost

resources_available.PBScraynid = 8

resources_available.PBScrayorder = 1

resources_available.PBScrayseg = 1

resources_available.vnode = examplehost_8_1

resources_available.vntype = cray_compute

resources_assigned.accelerator_memory = @examplehost_8_0

resources_assigned.mem = 0kb

resources_assigned.naccelerators = @examplehost_8_0

resources_assigned.ncpus = 0

resources_assigned.netwins = 0

resources_assigned.vmem = 0kb

resv_enable = True

sharing = force_exclhost

12.6.5 How ALPS Request Is Constructed

The reservation request that is sent to the Cray is constructed from the contents of the
exec_vnode and Resource_List.select job attributes. If the exec_vnode attribute con-
tains chunks asking for the same ncpus and mem, these are grouped into one section of an
ALPS request. Cray requires one CPU per thread. The ALPS request is constructed using the
following rules:

Table 12-2: How Cray Elements Are Derived From exec_vnode Terms

Cray Element exec_vnode Term

Processing Element (PE) mpiprocs
PBS Professional 12.1 User’s Guide 281

Chapter 12 Submitting Cray Jobs
12.6.6 Viewing Accelerator Information

There is no aprun interface for requesting accelerator memory or model, so this information
is not translated into Cray elements. To see this information, look in the MoM logs for the
job’s login node.

12.7 Caveats and Advice

12.7.1 Use select and place Instead of mpp*

It is recommended to use select and place instead of mpp* resources. The mpp* resources are
deprecated.

Requested number of PEs / com-
pute node in this section of job
request (width)

Total mpiprocs on vnodes representing compute
node involved in this section of job request

Number of threads per PE (depth) (total assigned ncpus on vnodes representing a
compute node) / (total mpiprocs on vnodes repre-
senting a compute node)

Memory per PE (mem) (total memory in chunk request)/total mpiprocs in
chunk

Number of PEs per compute node
(nppn)

Sum of mpiprocs on vnodes representing a com-
pute node

Number of PEs per segment (npps) Not used.

Number of segments per node
(nspn)

Not used.

NUMA node (segments) Not used.

Table 12-2: How Cray Elements Are Derived From exec_vnode Terms

Cray Element exec_vnode Term
282 PBS Professional 12.1 User’s Guide

Submitting Cray Jobs Chapter 12
12.7.2 Using Combination or Number Resources

When requesting a resource that is set up by the administrator, you must use the same
resource string values as the ones set up by the administrator. “012” is not the same as “102”
or “201”. For example, when requesting a resource that allows you to request NUMA nodes
0 and 1, and the administrator used the string 01, you must request <resource
name>=01. If you request <resource name>=10, this will not work.

12.7.3 Avoid Invalid Cray Requests

It is possible to create a select and place statement that meets the requirements of PBS but not
of the Cray.

Example 12-14: The Cray width and depth values cannot be calculated from ncpus and
mpiprocs values. For example, if ncpus is 2 and mpiprocs is 4, the depth value is cal-
culated by dividing ncpus by mpiprocs, and is one-half. This is not a valid depth value
for Cray.

Example 12-15: ALPS cannot run jobs with some complex select statements. In particular, a
multiple program, multiple data (MPMD) ALPS reservation where two groups span a
compute node will produce an ALPS error, because the nid shows up in two Reserve-
Param sections.

12.7.4 Visibility of Jobs Launched from Login Nodes

Jobs that requested a vntype of cray_compute that were launched from an internal login
node are not listed in the jobs attribute of the internal login node.
PBS Professional 12.1 User’s Guide 283

Chapter 12 Submitting Cray Jobs
12.7.5 Resource Restrictions and Deprecations

12.7.5.1 Restriction on Translation of mpp* Resources

PBS translates only the following mpp* resources into select and place syntax:

mppwidth

mppdepth

mppnppn

mppmem

mpparch

mpphost

mpplabels

mppnodes

12.7.5.2 mpp* Resources Deprecated

The mpp* syntax is deprecated. See section 1.3, "Deprecations and Removals" on page 8 in
the PBS Professional Administrator’s Guide.

12.7.6 Do Not Mix mpp* and select/place

Jobs cannot use both -lmpp* syntax and -lselect/-lplace syntax.

12.7.7 Do Not Request PBScrayorder

Do not use PBScrayorder in a resource request.

12.7.8 Do Not Request naccelerators

Do not use naccelerators in a resource request. See section 12.5.11, “Requesting Accelera-
tors”, on page 277.

12.7.9 Do Not Suspend Jobs

Do not attempt to use qsig -s suspend on the Cray. Attempting to suspend a job on the
Cray will cause errors.
284 PBS Professional 12.1 User’s Guide

Submitting Cray Jobs Chapter 12
12.7.10 Request Fewer Chunks

The more chunks in each translated job request, the longer the scheduling cycle takes. Jobs
that request a value for mppnppn or ncpus effectively direct PBS to use the size of mppn-

ppn or ncpus as the value for ncpus for each chunk, thus dividing the number of chunks by
mppnppn or ncpus.

If you are on a homogeneous system, we recommend that chunks use the value for ncpus for
a vnode or for a compute node.

Example 12-16: Comparison of larger vs. smaller chunk size and the effect on scheduling
time:

Submit job with chunk size 1 and 8544 chunks:

qsub -lmppwidth=8544 job

Job’s Resource_List:

Resource_List.mppwidth = 8544

Resource_List.ncpus = 8544

Resource_List.place = free

Resource_List.select = 8544:vntype=cray_compute

Submit_arguments = -lmppwidth=8544 job

Scheduling took 6 seconds:

12/05/2011 16:46:10;0080;pbs_sched;Job;23.example;considering job to run

12/05/2011 16:46:16;0040;pbs_sched;Job;23.example;Job run

Submit job with chunk size 8 and 1068 chunks:

qsub -lmppwidth=8544,mppnppn=8 job

Job’s Resource_List:

Resource_List.mpiprocs = 8544

Resource_List.mppnppn = 8

Resource_List.mppwidth = 8544

Resource_List.ncpus = 8544

Resource_List.place = scatter

Resource_List.select = 1068:ncpus=8:mpiprocs=8:vntype=cray_compute

Scheduling took 1 second:
PBS Professional 12.1 User’s Guide 285

Chapter 12 Submitting Cray Jobs
12/05/2011 16:54:38;0080;pbs_sched;Job;24.example;Considering job to run

12/05/2011 16:54:39;0040;pbs_sched;Job;24.example;Job run

If you are on a heterogeneous system, with varying sizes for vnodes or compute nodes, you
can request chunk sizes that fit available hardware, but this may not be feasible.

12.8 Errors and Logging

12.8.1 Invalid Cray Requests

When a select statement does not meet Cray requirements, and the Cray reservation fails, the
following error message is printed in MoM’s log, at log event class 0x080:

“Fatal MPP reservation error preparing request”

12.8.2 Job Requests More Than Available

If do_not_span_psets is set to True, and a job requests more resources than are available in
one placement set, the following happens:

• The job's comment is set to the following:
“Not Running: can't fit in the largest placement set, and can't span psets”

• The following message is printed to the scheduler’s log:
“Can't fit in the largest placement set, and can't span placement sets”

12.8.3 All Requested mppnodes Not Found

If mppnodes are requested, but there are no vnodes that match the requested mppnodes (i.e.
0% of the mppnodes list is found), the job or reservation is rejected with the following mes-
sage:

“The following error was encountered: No matching vnodes for the given
mppnodes <mppnodes>”

A log message is printed to the server log at event class 0x0004:

“translate mpp: ERROR: could not find matching vnodes for the given
mppnodes <mppnodes (as input)>”
286 PBS Professional 12.1 User’s Guide

Submitting Cray Jobs Chapter 12
12.8.4 Some Requested mppnodes Not Found

If mppnodes are requested, and only some of the mppnodes are found to match the vnodes,
then the job or reservation is accepted, but the following is printed in the server log at event
class 0x0004:

“translate mpp: could not find matching vnodes for these given mppnodes
[<comma separated list of mppnodes>]”

The job may or may not run depending on whether the vnodes that were matched up to the
requested mppnodes have enough resources for the job.

12.8.5 Bad mppnodes Range

If the resource request specifies an mppnodes range with the value on the right hand side of
the range less than or equal to the value on the left hand side of the range, the job or reserva-
tion is rejected with the following message:

The following error was encountered:

Bad range '<range>', the first number (<left_side>) must be less than the
second number (<right_side>)

A log message is printed to the server log at event class 0x0004:

“translate mpp: ERROR: bad range '<range>', the first number (<left_side>)
must be less than the second number (<right_side>)”

12.8.6 Resource Request Containing Both mpp* and
select/place

If a resource request contains both mpp* and select/place, the job or reservation is rejected,
and the following error is printed:

“The following error was encountered:

mpp resources cannot be used with "select" or "place"”
PBS Professional 12.1 User’s Guide 287

Chapter 12 Submitting Cray Jobs
288 PBS Professional 12.1 User’s Guide

Chapter 13
Using Provisioning
PBS provides automatic provisioning of an OS or application on vnodes that are configured to
be provisioned. When a job requires an OS that is available but not running, or an application
that is not installed, PBS provisions the vnode with that OS or application.

13.1 Definitions

AOE
The environment on a vnode. This may be one that results from provision-
ing that vnode, or one that is already in place

Provision
To install an OS or application, or to run a script which performs installa-
tion and/or setup

Provisioned Vnode
A vnode which, through the process of provisioning, has an OS or applica-
tion that was installed, or which has had a script run on it

13.2 How Provisioning Works

Provisioning can be performed only on vnodes that have provisioning enabled, shown in the
vnode’s provision_enable attribute.

Provisioning can be the following:

• Directly installing an OS or application

• Running a script which may perform setup or installation
PBS Professional 12.1 User’s Guide 289

Chapter 13 Using Provisioning
Each vnode is individually configured for provisioning with a list of available AOEs, in the
vnode’s resources_available.aoe attribute.

Each vnode’s current_aoe attribute shows that vnode’s current AOE. The scheduler queries
each vnode’s aoe resource and current_aoe attribute in order to determine which vnodes to
provision for each job.

Provisioning can be used for interactive jobs.

A job’s walltime clock starts when provisioning for the job has finished.

13.2.1 Causing Vnodes To Be Provisioned

An AOE can be requested for a job or a reservation. When a job requests an AOE, that means
that the job will be run on vnodes running that AOE. When a reservation requests an AOE,
that means that the reservation reserves vnodes that have that AOE available. The AOE is
instantiated on reserved vnodes only when a job requesting that AOE runs.

When the scheduler runs each job that requests an AOE, it either finds the vnodes that satisfy
the job’s requirements, or provisions the required vnodes. For example, if SLES is available
on a set of vnodes that otherwise suit your job, you can request SLES for your job, and regard-
less of the OS running on those vnodes before your job starts, SLES will be running at the
time the job begins execution.

13.2.2 Using an AOE

When you request an AOE for a job, the requested AOE must be one of the AOEs that has
been configured at your site. For example, if the AOEs available on vnodes are “rhel” and
“sles”, you can request only those; you cannot request “suse”.

You can request a reservation for vnodes that have a specific AOE available. This way, jobs
needing that AOE can be submitted to that reservation. This means that jobs needing that
AOE are guaranteed to be running on vnodes that have that AOE available.

Each reservation can have at most one AOE specified for it. Any jobs that run in that reserva-
tion must not request a different AOE from the one requested for the reservation. That is, the
job can run in the reservation if it either requests no AOE, or requests the same AOE as the
reservation.

13.2.3 Job Substates and Provisioning

When a job is in the process of provisioning, its substate is provisioning. This is the descrip-
tion of the substate:
290 PBS Professional 12.1 User’s Guide

Using Provisioning Chapter 13
provisioning
The job is waiting for vnode(s) to be provisioned with its requested AOE.
Integer value is 71. See “Job Substates” on page 408 of the PBS Profes-
sional Reference Guide for a list of job substates.

The following table shows how provisioning events affect job states and substates:

13.3 Requirements and Restrictions

13.3.1 Host Restrictions

13.3.1.1 Single-vnode Hosts Only

PBS will provision only single-vnode hosts. Do not attempt to use provisioning on hosts that
have more than one vnode.

13.3.1.2 Server Host Cannot Be Provisioned

The Server host cannot be provisioned: a MoM can run on the Server host, but that MoM’s
vnode cannot be provisioned. The provision_enable vnode attribute,
resources_available.aoe, and current_aoe cannot be set on the Server host.

Table 13-1: Provisioning Events and Job States/Substates

Event
Initial Job

State, Substate
Resulting Job
State, Substate

Job submitted Queued and ready for

selection

Provisioning starts Queued, Queued Running, Provisioning

Provisioning fails to start Queued, Queued Held, Held

Provisioning fails Running, Provisioning Queued, Queued

Provisioning succeeds and
job runs

Running, Provisioning Running, Running

Internal error occurs Running, Provisioning Held, Held
PBS Professional 12.1 User’s Guide 291

Chapter 13 Using Provisioning
13.3.2 AOE Restrictions

Only one AOE can be instantiated at a time on a vnode.

Only one kind of aoe resource can be requested in a job. For example, an acceptable job
could make the following request:

-l select=1:ncpus=1:aoe=suse+1:ncpus=2:aoe=suse

13.3.2.1 Vnode Job Restrictions

A vnode with any of the following jobs will not be selected for provisioning:

• One or more running jobs

• A suspended job

• A job being backfilled around

13.3.2.2 Provisioning Job Restrictions

A job that requests an AOE will not be backfilled around.

13.3.2.3 Vnode Reservation Restrictions

A vnode will not be selected for provisioning for job MyJob if the vnode has a confirmed res-
ervation, and the start time of the reservation is before job MyJob will end.

A vnode will not be selected for provisioning for a job in reservation R1 if the vnode has a
confirmed reservation R2, and an occurrence of R1 and an occurrence of R2 overlap in time
and share a vnode for which different AOEs are requested by the two occurrences.

13.3.3 Requirements for Jobs

13.3.3.1 If AOE is Requested, All Chunks Must Request Same
AOE

If any chunk of a job requests an AOE, all chunks must request that AOE.

If a job requesting an AOE is submitted to a reservation, that reservation must also request the
same AOE.
292 PBS Professional 12.1 User’s Guide

Using Provisioning Chapter 13
13.4 Using Provisioning

13.4.1 Requesting Provisioning

You request a reservation with an AOE in order to reserve the resources and AOE required to
run a job. You request an AOE for a job if that job requires that AOE. You request provision-
ing for a job or reservation using the same syntax.

You can request an AOE for the entire job/reservation:

-l aoe = <AOE>

Example:

-l aoe = suse

The -l <AOE> form cannot be used with -l select.

You can request an AOE for a single-chunk job/reservation:

-l select=<chunk request>:aoe=<AOE>

Example:

-ls select=1:ncpus=2:aoe=rhel

You can request the same AOE for each chunk of a job/reservation:

-l select=<chunk request>:aoe=<AOE> + <chunk request>:aoe=<AOE>

Example:

-l select=1:ncpus=1:aoe=suse + 2:ncpus=2:aoe=suse

13.4.2 Commands and Provisioning

If you try to use PBS commands on a job that is in the provisioning substate, the commands
behave differently. The provisioning of vnodes is not affected by the commands; if provision-
ing has already started, it will continue. The following table lists the affected commands:

Table 13-2: Effect of Commands on Jobs in Provisioning Substate

Command Behavior While in Provisioning Substate

qdel (Without force) Job is not deleted

(With force) Job is deleted
PBS Professional 12.1 User’s Guide 293

Chapter 13 Using Provisioning
13.4.3 How Provisioning Affects Jobs

A job that has requested an AOE will not preempt another job. Therefore no job will be termi-
nated in order to run a job with a requested AOE.

A job that has requested an AOE will not be backfilled around.

13.5 Caveats and Errors

13.5.1 Requested Job AOE and Reservation AOE Should
Match

Do not submit jobs that request an AOE to a reservation that does not request the same AOE.
Reserved vnodes may not supply that AOE; your job will not run.

13.5.2 Allow Enough Time in Reservations

If a job is submitted to a reservation with a duration close to the walltime of the job, provi-
sioning could cause the job to be terminated before it finishes running, or to be prevented
from starting. If a reservation is designed to take jobs requesting an AOE, leave enough extra
time in the reservation for provisioning.

qsig -s suspend Job is not suspended

qhold Job is not held

qrerun Job is not requeued

qmove Cannot be used on a job that is provisioning

qalter Cannot be used on a job that is provisioning

qrun Cannot be used on a job that is provisioning

Table 13-2: Effect of Commands on Jobs in Provisioning Substate

Command Behavior While in Provisioning Substate
294 PBS Professional 12.1 User’s Guide

Using Provisioning Chapter 13
13.5.3 Requesting Multiple AOEs For a Job or Reservation

Do not request more than one AOE per job or reservation. The job will not run, or the reser-
vation will remain unconfirmed.

13.5.4 Held and Requeued Jobs

The job is held with a system hold for the following reasons:

• Provisioning fails due to invalid provisioning request or to internal system error

• After provisioning, the AOE reported by the vnode does not match the AOE requested by
the job

The hold can be released by the PBS Administrator after investigating what went wrong and
correcting the mistake.

The job is requeued for the following reasons:

• The provisioning hook fails due to timeout

• The vnode is not reported back up

13.5.5 Conflicting Resource Requests

The values of the resources arch and vnode may be changed by provisioning. Do not request
an AOE and either arch or vnode for the same job.

13.5.6 Job Submission and Alteration Have Same
Requirements

Whether you use the qsub command to submit a job, or the qalter command to alter a job,
the job must eventually meet the same requirements. You cannot submit a job that meets the
requirements, then alter it so that it does not.
PBS Professional 12.1 User’s Guide 295

Chapter 13 Using Provisioning
296 PBS Professional 12.1 User’s Guide

Chapter 14
HPC Basic Profile Jobs
Support for HPCBP jobs is deprecated.

PBS Professional can schedule and manage jobs on one or more HPC Basic Profile compliant
servers using the Grid Forum OGSA HPC Basic Profile web services standard. You can sub-
mit a generic job to PBS, so that PBS can run it on an HPC Basic Profile Server. This chapter
describes how to use PBS for HPC Basic Profile jobs.

14.1 Definitions

HPC Basic Profile (HPCBP)
Proposed standard web services specification for basic job execution capa-
bilities defined by the OGSA High Performance Computing Profile Work-
ing Group

HPC Basic Profile Server
Service that executes jobs from any HPC Basic Profile compliant client

HPCBP MoM
MoM that sends jobs for execution to an HPC Basic Profile Server. This
MoM is a client-side implementation of the HPC Basic Profile Specifica-
tion, and acts as a proxy for and interface to an HPC Basic Profile compli-
ant server.

HPC Basic Profile Job, HPCBP Job
Generic job that can run either on vnodes managed by PBS or on nodes
managed by HPC Basic Profile Server.

Job Submission Description Language (JSDL)
Language for describing the resource requirements of jobs
PBS Professional 12.1 User’s Guide 297

Chapter 14 HPC Basic Profile Jobs
14.2 How HPC Basic Profile Jobs Work

14.2.1 Introduction

PBS automatically schedules jobs on vnodes managed by PBS Professional or on nodes man-
aged by an HPC Basic Profile Server, without the need for you to specify destination-specific
parameters. Whether the jobs run on PBS Professional or on an HPC Basic Profile Server is
based only on site policies and resource availability.

You can use the qstat command for status reporting and the qdel command to cancel a
job, regardless of where the job runs.

Jobs eligible to run on the HPCBP Server must specify only a single executable and its argu-
ments, and must do so via the qsub command line. The job specification must be valid for
both PBS and the HPCBP Server. A job that is eligible to run on the HPCBP Server is called
an HPCBP job in this document.

14.2.2 Assigning Nodes and Resources to Jobs

The HPCBP MoM does not control the resources assigned from each node for a job. The HPC
Basic Profile Server assigns resources to the job according to its scheduling policy.

If you specify HPCBP hosts as part of the job’s select statement, the list of of HPCBP hosts is
passed to the HPCBP Server.

14.3 Environmental Requirements for HPCBP

14.3.1 User Account at HPCBP Server

You must be able to run commands at the HPCBP Server. You must have an account in the
Domain Controller at the HPCBP Server.

14.3.2 HPCBP Submission Client Architecture

You can submit HPCBP jobs only from submission hosts that have the correct architecture.
These are all supported Linux platforms on x86 and x86_64.
298 PBS Professional 12.1 User’s Guide

HPC Basic Profile Jobs Chapter 14
14.3.3 Password Requirement For Job Submission

The HPC Basic Profile Server requires a password and a username to perform operations such
as job submission, status, termination etc. The PBS Server must pass credential information
to the HPCBP MoM at the time of job submission.

Before submitting an HPCBP job, you must run the pbs_password command to store your
password at the PBS server. When you submit an HPCBP job, you must supply a password.
This is done in one of two ways:

• The administrator sets the single_signon_password_enable server attribute to True

• You use the '-Wpwd' option to the qsub command to pass credential information to the
PBS Server

14.3.4 Location of Executable

The executable that your job runs must be available at the HPC Server. The following table
lists how the path to the executable can be specified:

14.4 Submitting HPC Basic Profile Jobs

As with PBS jobs, you do not need to specify destination-specific parameters.

Table 14-1: Executable Path Specification

Path Specification Location of Executable

You can specify an absolute path to the
executable

Anywhere available to the HPCBP Server

You can specify a path relative to your
home directory on the HPC Server

A path relative to your home directory on the
HPC Server

You can specify just the name of the exe-
cutable

The executable is in your PATH or in your
default working directory
PBS Professional 12.1 User’s Guide 299

Chapter 14 HPC Basic Profile Jobs
14.4.1 Restrictions on Submitting Jobs for Execution at
HPCBP Server

14.4.1.1 Specifying Executable for Job

The job must specify exactly one executable and its arguments. This must be done on the
qsub command line.

14.4.1.2 HPCBP Jobs Run on One HPCBP Server

The job must not be split across more than one HPCBP Server:

• It cannot be split across two or more HPCBP Servers

• It cannot be split across an HPCBP Server and another node

14.4.1.3 Number of CPUs and mpiprocs

For each chunk, the aggregate number of requested ncpus must match the aggregate number
of requested mpiprocs. The default value per chunk for both ncpus and mpiprocs is 1. If
you request 1 CPU per chunk, you do not have to specify the mpiprocs. If the requested val-
ues for ncpus and mpiprocs are different, an error message is logged to the HPCBP MoM
log file and the job is rejected. So for example if you request

qsub -l select=3:ncpus=2:mem=8gb

the job is rejected because no mpiprocs were requested.

14.4.1.4 Number of ompthreads

For a job with more than one chunk that requests ompthreads, each chunk must request the
same value for ompthreads. Otherwise, an error message is logged to the HPCBP MoM log
file and the job is rejected.

14.4.1.5 Restrictions on Requesting arch Resource

Requesting a value for arch in an HPCBP job means requesting a node or nodes with that
architecture from among the nodes controlled by the HPCBP Server. It is not necessary for a
job to request a value for arch. An HPCBP job can request any arch value that can be satis-
fied by the HPCBP Server.
300 PBS Professional 12.1 User’s Guide

HPC Basic Profile Jobs Chapter 14
14.4.2 Using the qsub Command for HPCBP Jobs

Job submission for non-HPCBP jobs is unchanged. However, when you submit an HPCBP
job, you must do the following:

• Specify only one executable and its arguments

• Specify executable and arguments in the qsub command line

14.4.2.1 qsub Syntax for HPCBP Jobs

qsub [-a date_time] [-A account_string] [-c interval] [-C directive_prefix]
[-e path] [-h] [-I] [-j oe|eo] [-J X-Y[:Z]] [-k o|e|oe] [-l
resource_list] [-m mail_options] [-M user_list] [-N jobname] [-o path]
[-p priority] [-q queue] [-r y|n] [-S path] [-u user_list] [-W otherat-
tributes=value...] [-v variable_list] [-V] [-z] -- cmd [arg1...]

or

qsub --version

where cmd is the executable, and arg1 is the first argument in the list.

14.4.2.2 qsub Options for HPCBP Jobs

The options to the qsub command set the attributes for the job. The following table shows a
list of PBS job attributes and their behavior for HPCBP jobs.

Table 14-2: Behavior of Job Attributes for HPCBP Jobs

PBS Job attribute Behavior

interactive Job is rejected with transient error

Resource List See section 14.4.3, “Requesting Resources”, on page 302

Output path Standard output is staged out to specified location

Error_path Standard error is staged out to specified location

no_stdio_sockets Unsupported

Shell_Path_List Unsupported

Variable_List User’s environment is passed to HPCBP Server
PBS Professional 12.1 User’s Guide 301

Chapter 14 HPC Basic Profile Jobs
14.4.3 Requesting Resources

The following table shows the behavior for of PBS resources HPCBP jobs:

alt_id Set to job ID returned by HPC Server

exec_host Same as standard. Set to list of hosts, with number of CPUs
for each

exec_vnode Same as standard. Set to list of vnodes, with number of CPUs
and amount of memory

job_state See section 14.5.1.1, “Job Status Reporting”, on page 305

resources_used Set to cputime used and amount of memory requested

session_id Returns process ID of process started by the HPCBP MoM for
job management, not of HPCBP job itself

stime Reported start time of job; may be inexact

substate The job substate may not be same in HPC Basic Profile Server
and PBS

group_list Unsupported

stagein Specified files are staged in

stageout Specified files are staged out

umask Unsupported

Table 14-3: PBS Resources and Their Behavior for HPCBP Jobs

PBS Resource Behavior

arch Same as standard.

cput Amount of disk space for job

file Same as standard

Table 14-2: Behavior of Job Attributes for HPCBP Jobs

PBS Job attribute Behavior
302 PBS Professional 12.1 User’s Guide

HPC Basic Profile Jobs Chapter 14
host Same as standard

mem Same as standard

mpiprocs Number of CPUs to be allocated to job

mppwidth Unsupported

mppdepth Unsupported

mppnppn Unsupported

mppnodes Unsupported

mpplabels Unsupported

mppmem Unsupported

mpphost Unsupported

mpparch Unsupported

ncpus Same as standard

nice Unsupported

nodect Unsupported

ompthreads Must specify equal number of ompthreads in all
chunks of multi-chunk job

pcput Same as standard

pmem Same as standard

pvmem Same as standard

software Unsupported

vmem Same as standard

vnode Same as standard

walltime Supported

Table 14-3: PBS Resources and Their Behavior for HPCBP Jobs

PBS Resource Behavior
PBS Professional 12.1 User’s Guide 303

Chapter 14 HPC Basic Profile Jobs
14.4.4 Specifying Job Destination

If necessary, you can specify where your job should run. You can specify on which nodes you
want to run your job by specifying a host name:

-lselect=host=<host name>

If your application can run only on Windows, then you should request PBS to run the job only
on Windows HPC Server nodes by specifying the architecture:

-lselect=arch=<arch value returned from HPCBP MoM>

Similarly, if you want to run your application on Linux, then you need to specify that architec-
ture:

-lselect=arch=linux

If you don't specify a value for the arch resource at the time of job submission, PBS will
select vnodes based on availability and run your application there.

14.5 Managing HPCBP Jobs

14.5.1 Monitoring HPCBP Jobs

You can use qstat -f <job ID> to see a listing of your job’s executable and its argu-
ment list.

For example, if your job request was:

qsub -- ping -n 100 127.0.0.1

The output of qstat -f <job ID> will be:

executable = <jsdl-hpcpa:Executable>ping</jsdl-hpcpa:Executable>

argument_list = <jsdl-hpcpa:Argument>-n</jsdl-hpcpa:Argument> <jsdl-
hpcpa:Argument>100</jsdl-hpcpa:Argument> <jsdl-
hpcpa:Argument>127.0.0.1</jsdl-hpcpa:Argument>

cpupercent Unsupported

custom resources Unsupported

Table 14-3: PBS Resources and Their Behavior for HPCBP Jobs

PBS Resource Behavior
304 PBS Professional 12.1 User’s Guide

HPC Basic Profile Jobs Chapter 14
14.5.1.1 Job Status Reporting

PBS provides status reporting for HPC Basic Profile jobs via the qstat command. The
HPCBP MoM contacts the HPC Basic Profile Server and returns status information to the
PBS Server. The only information available is via the HPC Basic Profile.

The job states returned from HPC Basic Profile Server can be one of the following:

• Pending

• Running

• Failed

• Finished

• Terminated

However, the only states that are reported by qstat are

• Running

• Exiting

The HPCBP Server reports that the job is in Running state whether the job is waiting to run
or is running.

Once a job transitions to any of the states Terminated, Failed or Finished, the HPCBP MoM
will no longer query for the status of that job.

A job whose status is Running can become Terminated, Failed, or Finished, or Exiting.

14.5.1.2 Deleting jobs running at HPC Basic Profile Server

You can delete your jobs via the qdel command:

qdel <job ID>

14.6 Errors, Logging and Troubleshooting

14.6.1 Job Submission Password Problems

If you specify the wrong password, or the password is different from the one at the HPC Basic
Profile Server:

• The HPCBP MoM rejects the job and the PBS Server sets the job’s comment

• The PBS Server logs a message in the server log

• The PBS Server changes the state of the job to Hold and the substate to waiting on
PBS Professional 12.1 User’s Guide 305

Chapter 14 HPC Basic Profile Jobs
dependency and keeps it in the queue

14.6.2 Job Format Problems

If you submit only a job script, without any executable and argument list, and PBS attempts to
run the job on the HPCBP Server, the HPCBP MoM will log a message and return an error.

If you submit a job requesting non-HPCBP vnodes and HPCBP nodes, or requesting nodes
from two different HPCBP Servers:

• The job is rejected

• The HPCBP MoM logs an error message

14.6.3 Password-related Job Deletion Issues

If any problem, such as bad user credentials, occurs during an attempt to delete a job:

• The qdel command displays an error message

• The PBS server writes the error message to the server log

• The HPCBP MoM logs an error message

14.6.4 Error Log Messages at Job Submission, Querying,
and Deletion

The HPCBP MoM logs a warning message in the MoM log file whenever it gets any error or
warning at the time of:

• Job submission

• Contacting the HPC Basic Profile Server to find job status

• Job deletion

The HPCBP MoM logs job errors in the file <PBS job ID>.log. The HPCBP MoM
stages this file out to the location specified for stdout and stderr files.

The HPCBP MoM generates log messages depending on their event type and event class.
You can use the tracejob command to see these log messages.
306 PBS Professional 12.1 User’s Guide

HPC Basic Profile Jobs Chapter 14
The following table shows the warning and error messages logged by the HPCBP MoM and
the PBS Server:

Table 14-4: Warning and Error Messages Logged by HPCBP MoM

Error Condition
Logged

by
Message

Password-related issues

Bad user credential at the time
of qdel

HPCBP
MoM,
PBS
Server

<username>: unable to terminate the job
with user's credentials

Cannot determine job state
when finding status of jobs run-
ning at HPC Basic Profile
Server

HPCBP
MoM

<pbsnobody>: unable to determine the
state of the job

Conversion of PBS job request to JSDL

Problem with parsing job
request

HPCBP
MoM

unable to parse the job request

Job request contains a script HPCBP
MoM

can't submit job to HPC Basic Profile
Server, HPCBP MoM doesn't accept job
script

JSDL script file problem HPCBP
MoM

unable to create JSDL document

gSOAP-related problems

cannot create SSL-based chan-
nel

HPCBP
MoM

unable to create ssl-based channel to con-
nect to the Web Service endpoint

Username token problem HPCBP
MoM

unable to add username/password to soap
message

Cannot initialize gSOAP runt-
ime environment

HPCBP
MoM

unable to initialize gsoap runtime envi-
ronment

Problems encountered during job submission
PBS Professional 12.1 User’s Guide 307

Chapter 14 HPC Basic Profile Jobs
Cannot add SOAP Header HPCBP
MoM

unable to add soap header to the 'create
activity' request message

Bad JSDL script file HPCBP
MoM

unable to open JSDL document

Problem with JSDL attribute HPCBP
MoM

error in reading contents of the JSDL
document

Problem with HPCBP Server
connection

HPCBP
MoM

unable to submit job to the hpcbp web
service endpoint

Problem with user's password HPCBP
MoM &
PBS
Server

unable to submit job with user's creden-
tial

Problem reading SOAP
response

HPCBP
MoM

unable to read HPCBP job identifier from
create activity response

Problems encountered when deleting job

Cannot add SOAP Header HPCBP
MoM

unable to add SOAP Header to the 'termi-
nate activities' request message

Problem reading HPCBP job ID HPCBP
MoM

unable to read HPCBP job identifier

Bad HPC Basic Profile Server
connection

HPCBP
MoM

unable to connect to the HPCBP web ser-
vice endpoint

Problem with user's password HPCBP
MoM,
PBS
Server

unable to terminate job with user's cre-
dentials

Received malformed response
from HPCBP Server

HPCBP
MoM

unable to parse the response received for
job deletion request from HPCBP Server

Problems encountered when finding status of job

Table 14-4: Warning and Error Messages Logged by HPCBP MoM

Error Condition
Logged

by
Message
308 PBS Professional 12.1 User’s Guide

HPC Basic Profile Jobs Chapter 14
Cannot add SOAP Header HPCBP
MoM

unable to add SOAP Header to the 'get
activity statuses' request message

Problem reading HPCBP JOB
ID

HPCBP
MoM

unable to read HPCBP job identifier

Bad HPC Basic Profile Server
connection

HPCBP
MoM

unable to connect to the HPCBP web ser-
vice endpoint

Received malformed response
from HPCBP Server

HPCBP
MoM

unable to parse the job status response
received from HPCBP Server

Problems encountered when finding node status

Cannot add SOAP Header HPCBP
MoM

unable to add SOAP Header to the 'get
factory attributes document' request mes-
sage

Problem with reading the node
status information

HPCBP
MoM

unable to parse node status information
received from the HPC Basic Profile
Server

HPC Basic Profile Server Con-
nection

HPCBP
MoM

unable to connect to the HPCBP web ser-
vice endpoint

mpiprocs-related error

unequal ncpus & mpiprocs HPCBP
MoM

can't submit job to the HPC Basic Profile
Server; total number of ncpus and
mpiprocs requested are not equal

ompthreads error

ompthreads are not equal
across chunks

HPCBP
MoM

can't submit job to the HPC Basic Profile
Server; number of 'ompthreads' are not
equal in multi-chunk job request

Generic Problems

Table 14-4: Warning and Error Messages Logged by HPCBP MoM

Error Condition
Logged

by
Message
PBS Professional 12.1 User’s Guide 309

Chapter 14 HPC Basic Profile Jobs
14.6.5 Job State Transition Log Messages

See the following table for a list of the job transitions in the HPCBP Server and the associated
actions by the HPCBP MoM:

No reply from HPCBP Server HPCBP
MoM

unable to receive response from hpcbp
web service endpoint

OpenSSL library issues

Cannot find OpenSSL libraries
on system

HPCBP
MoM

unable to find openssl libraries on the
system.

Table 14-5: Job Transitions in HPCBP Server and Associated Actions by
HPCBP MoM

Job Transitions in HPC
Basic Profile Server

Message Logged By HPCBP MoM
Start
State

End State

Pending Running “job transitioned from pending to running

Pending Terminated “job transitioned from pending to terminated”

Running Terminated “job transitioned from running to terminated”

Running Failed “job transitioned from running to failed”

Running Finished “job completed successfully”

Pending Finished “job transitioned from pending to finished”

Pending Failed “job transitioned from pending to failed”

(none) Failed “job first appeared in “Failed” state”

Table 14-4: Warning and Error Messages Logged by HPCBP MoM

Error Condition
Logged

by
Message
310 PBS Professional 12.1 User’s Guide

HPC Basic Profile Jobs Chapter 14
Whenever a job is submitted to the HPC Basic Profile Server, the HPCBP MoM logs the fol-
lowing message:

job submitted to HPCBP Server as jobid <hpcbp-jobid> in state <state>

14.7 Advice and Caveats

14.7.1 Differences Between PBS and HPCBP

• The stime attribute in the PBS accounting logs may not represent the exact start time for
an HPCBP job.

• The HPCBP MoM does not use the pbs_rcp command for staging operations, regard-
less of whether the PBS_SCP environment variable has been set in the configuration
file.

14.7.2 PBS Features Not Supported With HPCBP

• Peer Scheduling

• Job operations:

 - Suspend/resume

 - Checkpoint

14.7.2.1 Unsupported Commands

If you or administrator runs the pbsdsh command for a job running on the HPCBP Server,
the HPCBP MoM logs an error message to the MoM file and rejects the job.
PBS Professional 12.1 User’s Guide 311

Chapter 14 HPC Basic Profile Jobs
The following commands and their API equivalents are not supported for jobs that end up run-
ning on the HPCBP Server:

• qalter

• qsig

• qmsg

• pbsdsh

• pbs-report

• printjob

• pbs_rcp

• tracejob

• pbs_rsub

• pbs_rstat

• pbs_rdel

• qhold

• qrls

• qrerun

14.8 See Also

For a description of how job attributes are translated into JSDL, see the PBS Professional
External Reference Specification.
312 PBS Professional 12.1 User’s Guide

HPC Basic Profile Jobs Chapter 14
14.8.1 References

1. OGSA High Performance Computing Profile Working Group (OGSA-HPCP-WG) of
the Open Grid Forum

https://forge.gridforum.org/sf/projects/ogsa-hpcp-wg

The HPC Basic Profile specification is GFD.114:

http://www.ogf.org/documents/GFD.114.pdf.

2. OGSA High Performance Computing Profile Working Group (OGSA-HPCP-WG) of
the Open Grid Forum

https://forge.gridforum.org/sf/projects/ogsa-hpcp-wg

The HPC File Staging Profile Version 1.0:

http://forge.ogf.org/sf/go/doc15024?nav=1

3. OGSA Job Submission Description Language Working Group (JSDL - WG) of the
Open Grid Forum

http://www.ogf.org/gf/group_info/view.php?group=jsdl-wg

The JSDL HPC Profile Application Extension, Version 1.0 is GFD 111:

http://www.ogf.org/documents/GFD.111.pdf

4. OGSA Usage Record Working Group (UR-WG) of the Open Grid Forum

 The Usage Record - Format Recommendation is GFD.98

http://www.ogf.org/documents/GFD.98.pdf

5. Network Working Group, Uniform Resource Identifier (URI) : Generic Syntax

http://www.rfc-editor.org/rfc/rfc3986.txt
PBS Professional 12.1 User’s Guide 313

Chapter 14 HPC Basic Profile Jobs
314 PBS Professional 12.1 User’s Guide

Chapter 15
Special Circumstances and
Tools

15.1 Support for Large Page Mode on AIX

A process running as part of a job can use large pages. The memory reported in
resources_used.mem may be larger with large page sizes.

You can set an environment variable to request large memory pages:

LDR_CNTRL="LARGE_PAGE_DATA=M"

LDR_CNTRL="LARGE_PAGE_DATA=Y"

For more information see the man page for setpcred. This can be viewed with the com-
mand "man setpcred" on an AIX machine.

You can run a job that requests large page memory in "mandatory mode":

% qsub

export LDR_CNTRL="LARGE_PAGE_DATA=M"

/path/to/exe/bigprog

^D

You can run a job that requests large page memory in "advisory mode":

% qsub

export LDR_CNTRL="LARGE_PAGE_DATA=Y"

/path/to/exe/bigprog

^D
PBS Professional 12.1 User’s Guide 315

Chapter 15 Special Circumstances and Tools
15.2 Using Comprehensive System Accounting

PBS support for CSA on SGI systems is no longer available. The CSA functionality for SGI
systems has been removed from PBS. You can use CSA on Cray systems.

CSA provides accounting information about user jobs, called user job accounting.

CSA works the same with and without PBS. To run user job accounting, either you must
specify the file to which raw accounting information will be written, or an environment vari-
able must be set. The environment variable is “ACCT_TMPDIR”. This is the directory
where a temporary file of raw accounting data is written.

To run user job accounting, you issue the CSA command “ja <filename>” or, if the envi-
ronment variable “ACCT_TMPDIR” is set, “ja”. In order to have an accounting report pro-
duced, you issue the command “ja -<options>” where the options specify that a report
will be written and what kind. To end user job accounting, you issue the command “ja -t”;
the -t option can be included in the previous set of options. See the man page on ja for
details.

The starting and ending ja commands must be used before and after any other commands you
wish to monitor. Here are examples of command line and a script:

On the command line:

qsub -N myjobname -l ncpus=1

ja myrawfile

sleep 50

ja -c > myreport

ja -t myrawfile

ctrl-D

Accounting data for your job (sleep 50) is written to myreport.

If you create a file foo with these commands:

#PBS -N myjobname

#PBS -l ncpus=1

ja myrawfile

sleep 50

ja -c > myreport

ja -t myrawfile

Then you could run this script via qsub:

qsub foo
316 PBS Professional 12.1 User’s Guide

Special Circumstances and Tools Chapter 15
This does the same thing, via the script “foo”.
PBS Professional 12.1 User’s Guide 317

Chapter 15 Special Circumstances and Tools
318 PBS Professional 12.1 User’s Guide

Chapter 16
Using the xpbs GUI
The PBS graphical user interface is called xpbs, and provides a user-friendly, point and click
interface to the PBS commands. xpbs utilizes the tcl/tk graphics tool suite, while providing
you with most of the same functionality as the PBS CLI commands. In this chapter we intro-
duce xpbs, and show how to create a PBS job using xpbs.

16.1 Using the xpbs command

16.1.1 Starting xpbs

If PBS is installed on your local workstation, or if you are running under Windows, you can
launch xpbs by double-clicking on the xpbs icon on the desktop. You can also start xpbs
from the command line with the following command.

UNIX:

xpbs &

Windows:

xpbs.exe

Doing so will bring up the main xpbs window, as shown below.
PBS Professional 12.1 User’s Guide 319

Chapter 16 Using the xpbs GUI
16.1.2 Running xpbs Under UNIX

Before running xpbs for the first time under UNIX, you may need to configure your work-
station for it. Depending on how PBS is installed at your site, you may need to allow xpbs to
be displayed on your workstation. However, if the PBS client commands are installed locally
on your workstation, you can skip this step. (Ask your PBS administrator if you are unsure.)

The most secure method of running xpbs remotely and displaying it on your local XWin-
dows session is to redirect the XWindows traffic through ssh (secure shell), via setting the
"X11Forwarding yes" parameter in the sshd_config file. (Your local system admin-
istrator can provide details on this process if needed.)

An alternative, but less secure, method is to direct your X-Windows session to permit the
xpbs client to connect to your local X-server. Do this by running the xhost command with
the name of the host from which you will be running xpbs, as shown in the example below:

xhost + server.mydomain.com

Next, on the system from which you will be running xpbs, set your X-Windows DISPLAY
variable to your local workstation. For example, if using the C-shell:

setenv DISPLAY myWorkstation:0.0

However, if you are using the Bourne or Korn shell, type the following:

export DISPLAY=myWorkstation:0.0

16.2 Using xpbs: Definitions of Terms

The various panels, boxes, and regions (collectively called “widgets”) of xpbs and how they
are manipulated are described in the following sections. A listbox can be multi-selectable (a
number of entries can be selected/highlighted using a mouse click) or single-selectable (one
entry can be highlighted at a time).

For a multi-selectable listbox, the following operations are allowed:

• left-click to select/highlight an entry.

• shift-left-click to contiguously select more than one entry.

• control-left-click to select multiple non-contiguous entries.

• click the Select All / Deselect All button to select all entries or deselect all entries at once.

• double clicking an entry usually activates some action that uses the selected entry as a
parameter.
320 PBS Professional 12.1 User’s Guide

Using the xpbs GUI Chapter 16
An entry widget is brought into focus with a left-click. To manipulate this widget, simply type
in the text value. Use of arrow keys and mouse selection of text for deletion, overwrite, copy-
ing and pasting with sole use of mouse buttons are permitted. This widget has a scrollbar for
horizontally scanning a long text entry string.

A matrix of entry boxes is usually shown as several rows of entry widgets where a number of
entries (called fields) can be found per row. The matrix is accompanied by up/down arrow
buttons for paging through the rows of data, and each group of fields gets one scrollbar for
horizontally scanning long entry strings. Moving from field to field can be done using the
<Tab> (move forward), <Cntrl-f> (move forward), or <Cntrl-b> (move backward) keys.

A spinbox is a combination of an entry widget and a horizontal scrollbar. The entry widget
will only accept values that fall within a defined list of valid values, and incrementing through
the valid values is done by clicking on the up/down arrows.

A button is a rectangular region appearing either raised or pressed that invokes an action when
clicked with the left mouse button. When the button appears pressed, then hitting the
<RETURN> key will automatically select the button.

A text region is an editor-like widget. This widget is brought into focus with a left-click. To
manipulate this widget, simply type in the text. Use of arrow keys, backspace/delete key,
mouse selection of text for deletion or overwrite, and copying and pasting with sole use of
mouse buttons are permitted. This widget has a scrollbar for vertically scanning a long entry.

16.3 Introducing the xpbs Main Display

The main window or display of xpbs is comprised of five collapsible subwindows or panels.
Each panel contains specific information. Top to bottom, these panels are: the Menu Bar,
Hosts panel, Queues panel, Jobs panel, and the Info panel.

16.3.1 xpbs Menu Bar

The Menu Bar is composed of a row of command buttons that signal some action with a click
of the left mouse button. The buttons are:

Manual Update
forces an update of the information on hosts, queues, and jobs.

Auto Update
sets an automatic update of information every user-specified number of
minutes.

Track Job
for periodically checking for returned output files of jobs.
PBS Professional 12.1 User’s Guide 321

Chapter 16 Using the xpbs GUI
Preferences
for setting parameters such as the list of Server host(s) to query.

Help
contains some help information.

About
gives general information about the xpbs GUI.

Close
for exiting xpbs plus saving the current setup information.
322 PBS Professional 12.1 User’s Guide

Using the xpbs GUI Chapter 16
16.3.2 xpbs Hosts Panel

The Hosts panel is composed of a leading horizontal HOSTS bar, a listbox, and a set of com-
mand buttons. The HOSTS bar contains a minimize/maximize button, identified by a dot or a
rectangular image, for displaying or iconizing the Hosts region. The listbox displays informa-
tion about favorite Server host(s), and each entry is meant to be selected via a single left-click,
shift-left-click for contiguous selection, or control-left-click for non-contiguous selection.

To the right of the Hosts Panel are buttons that represent actions that can be performed on
selected host(s). Use of these buttons will be explained in detail below.

detail
Provides information about selected Server host(s). This functionality can
also be achieved by double clicking on an entry in the Hosts listbox.

submit
For submitting a job to any of the queues managed by the selected host(s).

terminate
For terminating (shutting down) PBS Servers on selected host(s). (Visible
via the “-admin” option only.)

IMPORTANT:
Note that some buttons are only visible if xpbs is started with the “-
admin” option, which requires manager or operator privilege to function.

The middle portion of the Hosts Panel has abbreviated column names indicating the informa-
tion being displayed, as the following table shows:

Table 16-1: xpbs Server Column Headings

Heading Meaning

Max Maximum number of jobs permitted

Tot Count of jobs currently enqueued in any state

Que Count of jobs in the Queued state

Run Count of jobs in the Running state

Hld Count of jobs in the Held state

Wat Count of jobs in the Waiting state

Trn Count of jobs in the Transiting state
PBS Professional 12.1 User’s Guide 323

Chapter 16 Using the xpbs GUI
16.3.3 xpbs Queues Panel

The Queues panel is composed of a leading horizontal QUEUES bar, a listbox, and a set of
command buttons. The QUEUES bar lists the hosts that are consulted when listing queues; the
bar also contains a minimize/maximize button for displaying or iconizing the Queues panel.
The listbox displays information about queues managed by the Server host(s) selected from
the Hosts panel; each listbox entry can be selected as described above for the Hosts panel.

To the right of the Queues Panel area are buttons for actions that can be performed on selected
queue(s).

detail
provides information about selected queue(s). This functionality can also be
achieved by double clicking on a Queue listbox entry.

stop
for stopping the selected queue(s). (-admin only)

start
for starting the selected queue(s). (-admin only)

disable
for disabling the selected queue(s). (-admin only)

enable
for enabling the selected queue(s). (-admin only)

The middle portion of the Queues Panel has abbreviated column names indicating the infor-
mation being displayed, as the following table shows:

Ext Count of jobs in the Exiting state

Status Status of the corresponding Server

PEsInUse Count of Processing Elements (CPUs, PEs, Vnodes) in Use

Table 16-2: xpbs Queue Column Headings

Heading Meaning

Max Maximum number of jobs permitted

Table 16-1: xpbs Server Column Headings

Heading Meaning
324 PBS Professional 12.1 User’s Guide

Using the xpbs GUI Chapter 16
16.3.4 xpbs Jobs Panel

The Jobs panel is composed of a leading horizontal JOBS bar, a listbox, and a set of command
buttons. The JOBS bar lists the queues that are consulted when listing jobs; the bar also con-
tains a minimize/maximize button for displaying or iconizing the Jobs region. The listbox dis-
plays information about jobs that are found in the queue(s) selected from the Queues listbox;
each listbox entry can be selected as described above for the Hosts panel.

The region just above the Jobs listbox shows a collection of command buttons whose labels
describe criteria used for filtering the Jobs listbox contents. The list of jobs can be selected
according to the owner of jobs (Owners), job state (Job_State), name of the job
(Job_Name), type of hold placed on the job (Hold_Types), the account name associated
with the job (Account_Name), checkpoint attribute (Checkpoint), time the job is eligible
for queueing/execution (qtime), resources requested by the job (Resource_List), priority
attached to the job (Priority), and whether or not the job is rerunnable (Rerunable).

Tot Count of jobs currently enqueued in any state

Ena Is queue enabled? yes or no

Str Is queue started? yes or no

Que Count of jobs in the Queued state

Run Count of jobs in the Running state

Hld Count of jobs in the Held state

Wat Count of jobs in the Waiting state

Trn Count of jobs in the Transiting state

Ext Count of jobs in the Exiting state

Type Type of queue: execution or route

Server Name of Server on which queue exists

Table 16-2: xpbs Queue Column Headings

Heading Meaning
PBS Professional 12.1 User’s Guide 325

Chapter 16 Using the xpbs GUI
The selection criteria can be modified by clicking on any of the appropriate command buttons
to bring up a selection box. The criteria command buttons are accompanied by a Select Jobs
button, which when clicked, will update the contents of the Jobs listbox based on the new
selection criteria. Note that only jobs that meet all the selected criteria will be displayed.

Finally, to the right of the Jobs panel are the following command buttons, for operating on
selected job(s):

detail
provides information about selected job(s). This functionality can also be
achieved by double-clicking on a Jobs listbox entry.

modify
for modifying attributes of the selected job(s).

delete
for deleting the selected job(s).

hold
for placing some type of hold on selected job(s).

release
for releasing held job(s).

signal
for sending signals to selected job(s) that are running.

msg
for writing a message into the output streams of selected job(s).

move
for moving selected job(s) into some specified destination.

order
for exchanging order of two selected jobs in a queue.

run
for running selected job(s). (-admin only)

rerun
for requeueing selected job(s) that are running. (-admin only)

The middle portion of the Jobs Panel has abbreviated column names indicating the informa-
tion being displayed, as the following table shows:

Table 16-3: xpbs Job Column Headings

Heading Meaning

Job id Job Identifier
326 PBS Professional 12.1 User’s Guide

Using the xpbs GUI Chapter 16
16.3.5 xpbs Info Panel

The Info panel shows the progress of the commands executed by xpbs. Any errors are writ-
ten to this area. The INFO panel also contains a minimize/maximize button for displaying or
iconizing the Info panel.

16.3.6 xpbs Keyboard Tips

There are a number of shortcuts and key sequences that can be used to speed up using xpbs.
These include:

Tip 1.
All buttons which appear to be depressed in the dialog box/subwindow can
be activated by pressing the return/enter key.

Tip 2.
Pressing the tab key will move the blinking cursor from one text field to
another.

Tip 3.
To contiguously select more than one entry: left-click then drag the mouse
across multiple entries.

Tip 4.
To non-contiguously select more than one entry: hold the control-left-click
on the desired entries.

Name Name assigned to job, or script name

User User name under which job is running

PEs Number of Processing Elements (CPUs) requested

CputUse Amount of CPU time used

WalltUse Amount of wall-clock time used

S State of job

Queue Queue in which job resides

Table 16-3: xpbs Job Column Headings

Heading Meaning
PBS Professional 12.1 User’s Guide 327

Chapter 16 Using the xpbs GUI
16.4 Setting xpbs Preferences

The “Preferences” button is in the Menu Bar at the top of the main xpbs window. Clicking it
will bring up a dialog box that allows you to customize the behavior of xpbs:

1.
Define Server hosts to query

2.
Select wait timeout in seconds

3.
Specify xterm command (for interactive jobs, UNIX only)

4.
Specify which rsh/ssh command to use
328 PBS Professional 12.1 User’s Guide

Using the xpbs GUI Chapter 16
16.5 Relationship Between PBS and xpbs

xpbs is built on top of the PBS client commands, such that all the features of the command
line interface are available through the GUI. Each “task” that you perform using xpbs is con-
verted into the necessary PBS command and then run.

Table 16-4: xpbs Buttons and PBS Commands

 Location
Command

Button
PBS Command

Hosts Panel detail qstat -B -f selected server_host(s)

Hosts Panel submit qsub options selected Server(s)

Hosts Panel terminate * qterm selected server_host(s)

Queues Panel detail qstat -Q -f selected queue(s)

Queues Panel stop * qstop selected queue(s)

Queues Panel start * qstart selected queue(s)

Queues Panel enable * qenable selected queue(s)

Queues Panel disable * qdisable selected queue(s)

Jobs Panel detail qstat -f selected job(s)

Jobs Panel modify qalter selected job(s)

Jobs Panel delete qdel selected job(s)

Jobs Panel hold qhold selected job(s)

Jobs Panel release qrls selected job(s)

Jobs Panel run qrun selected job(s)

Jobs Panel rerun qrerun selected job(s)

Jobs Panel signal qsig selected job(s)

Jobs Panel msg qmsg selected job(s)

Jobs Panel move qmove selected job(s)
PBS Professional 12.1 User’s Guide 329

Chapter 16 Using the xpbs GUI
 * Indicates command button is visible only if xpbs is started with the “-admin” option.

16.6 How to Submit a Job Using xpbs

To submit a job using xpbs, perform the following steps:

First, select a host from the HOSTS listbox in the main xpbs display to which you wish to
submit the job.

Jobs Panel order qorder selected job(s)

Table 16-4: xpbs Buttons and PBS Commands

 Location
Command

Button
PBS Command
330 PBS Professional 12.1 User’s Guide

Using the xpbs GUI Chapter 16
Next, click on the Submit button located next to the HOSTS panel. The Submit button brings
up the Submit Job Dialog box (see below) which is composed of four distinct regions. The Job
Script File region is at the upper left. The OPTIONS region containing various widgets for
setting job attributes is scattered all over the dialog box. The OTHER OPTIONS is located
just below the Job Script file region, and COMMAND BUTTONS region is at the bottom.

The job script region is composed of a header box, the text box, FILE entry box, and two but-
tons labeled load and save. If you have a script file containing PBS options and executable
lines, then type the name of the file on the FILE entry box, and then click on the load button.
Alternatively, you may click on the FILE button, which will display a File Selection browse
window, from which you may point and click to select the file you wish to open. The File
Selection Dialog window is shown below. Clicking on the Select File button will load the file
into xpbs, just as does the load button described above.
PBS Professional 12.1 User’s Guide 331

Chapter 16 Using the xpbs GUI
The various fields in the Submit window will get loaded with values found in the script file.
The script file text box will only be loaded with executable lines (non-PBS) found in the
script. The job script header box has a Prefix entry box that can be modified to specify the
PBS directive to look for when parsing a script file for PBS options.

If you don’t have a existing script file to load into xpbs, you can start typing the executable
lines of the job in the file text box.

Next, review the Destination listbox. This box shows the queues found in the host that you
selected. A special entry called “@host” refers to the default queue at the indicated host.
Select appropriately the destination queue for the job.

Next, define any required resources in the Resource List subwindow.

The resources specified in the “Resource List” section will be job-wide resources only. In
order to specify chunks or job placement, use a script.

To run an array job, use a script. You will not be able to query individual subjobs or the whole
job array using xpbs. Type the script into the “File: entry” box. Do not click the “Load” but-
ton. Instead, use the “Submit” button.

Finally, review the optional settings to see if any should apply to this job.
332 PBS Professional 12.1 User’s Guide

Using the xpbs GUI Chapter 16
For example:

• Use the one of the buttons in the “Output” region to merge output and error files.

• Use “Stdout File Name” to define standard output file and to redirect output

• Use the “Environment Variables to Export” subwindow to have current environment vari-
ables exported to the job.

• Use the “Job Name” field in the OPTIONS subwindow to give the job a name.

• Use the “Notify email address” and one of the buttons in the OPTIONS subwindow to
have PBS send you mail when the job terminates.

Now that the script is built you have four options of what to do next:

• Reset options to default

• Save the script to a file

• Submit the job as a batch job

• Submit the job as an interactive-batch job (UNIX only)

Reset clears all the information from the submit job dialog box, allowing you to create a job
from a fresh start.

Use the FILE. field (in the upper left corner) to define a filename for the script. Then press the
Save button. This will cause a PBS script file to be generated and written to the named file.

Pressing the Confirm Submit button at the bottom of the Submit window will submit the PBS
job to the selected destination. xpbs will display a small window containing the job identifier
returned for this job. Clicking OK on this window will cause it and the Submit window to be
removed from your screen.

On UNIX systems (not Windows) you can alternatively submit the job as an interactive-batch
job, by clicking the Interactive button at the bottom of the Submit Job window. Doing so will
cause an X-terminal window (xterm) to be launched, and within that window a PBS interac-
tive-batch job submitted. The path for the xterm command can be set via the preferences, as
discussed above in section 16.4, “Setting xpbs Preferences”, on page 328. For further details
on usage, and restrictions, see section 7.10, “Running Your Job Interactively”, on page 176.)

16.7 Exiting xpbs

Click on the Close button located in the Menu bar to leave xpbs. If any settings have been
changed, xpbs will bring up a dialog box asking for a confirmation in regards to saving state
information. The settings will be saved in the .xpbsrc configuration file, and will be used
the next time you run xpbs, as discussed in the following section.
PBS Professional 12.1 User’s Guide 333

Chapter 16 Using the xpbs GUI
16.8 The xpbs Configuration File

Upon exit, the xpbs state may be written to the .xpbsrc file in your home directory. Infor-
mation saved includes: the selected host(s), queue(s), and job(s); the different jobs listing cri-
teria; the view states (i.e. minimized/maximized) of the Hosts, Queues, Jobs, and INFO
regions; and all settings in the Preferences section. In addition, there is a system-wide xpbs
configuration file, maintained by the PBS Administrator, which is used in the absence of your
personal .xpbsrc file.

16.9 xpbs Preferences

The resources that can be set in the xpbs configuration file, ˜/.xpbsrc, are:

*serverHosts
List of Server hosts (space separated) to query by xpbs. A special keyword
PBS_DEFAULT_SERVER can be used which will be used as a placeholder
for the value obtained from the /etc/pbs.conf file (UNIX) or “[PBS
Destination Folder]\pbs.conf” file (Windows).

*timeoutSecs
Specify the number of seconds before timing out waiting for a connection
to a PBS host.

*xtermCmd
The xterm command to run driving an interactive PBS session.

*labelFont
Font applied to text appearing in labels.

*fixlabelFont
Font applied to text that label fixed-width widgets such as listbox labels.
This must be a fixed-width font.

*textFont
Font applied to a text widget. Keep this as fixed-width font.

*backgroundColor
The color applied to background of frames, buttons, entries, scrollbar han-
dles.

*foregroundColor
The color applied to text in any context.

*activeColor
The color applied to the background of a selection, a selected command
button, or a selected scroll bar handle.
334 PBS Professional 12.1 User’s Guide

Using the xpbs GUI Chapter 16
*disabledColor
Color applied to a disabled widget.

*signalColor
Color applied to buttons that signal something to you about a change of
state. For example, the

color of the Track Job button when returned output files are detected.

*shadingColor
A color shading applied to some of the frames to emphasize focus as well as
decoration.

*selectorColor
The color applied to the selector box of a radiobutton or checkbutton.

*selectHosts
List of hosts (space separated) to automatically select/highlight in the
HOSTS listbox.

*selectQueues
List of queues (space separated) to automatically select/highlight in the
QUEUES listbox.

*selectJobs
List of jobs (space separated) to automatically select/highlight in the JOBS
listbox.

*selectOwners
List of owners checked when limiting the jobs appearing on the Jobs listbox
in the main xpbs window. Specify value as "Owners: <list_of_owners>".
See -u option in “qselect” on page 183 of the PBS Professional Reference
Guide for format of <list_of_owners>.

*selectStates
List of job states to look for (do not space separate) when limiting the jobs
appearing on the Jobs listbox in the main xpbs window. Specify value as
"Job_States: <states_string>". See -s option in “qselect” on page 183 of the
PBS Professional Reference Guide for format of <states_string>.

*selectRes
List of resource amounts (space separated) to consult when limiting the jobs
appearing on the Jobs

listbox in the main xpbs window. Specify value as "Resources:
<res_string>". See -l option in “qselect” on page 183 of the PBS Profes-
sional Reference Guide for format of <res_string>.

*selectExecTime
The Execution Time attribute to consult when limiting the list of jobs
appearing on the Jobs listbox in the main xpbs window. Specify value as
PBS Professional 12.1 User’s Guide 335

Chapter 16 Using the xpbs GUI
"Queue_Time: <exec_time>". See -a option in “qselect” on page 183 of the
PBS Professional Reference Guide for format of <exec_time>.

*selectAcctName
The name of the account that will be checked when limiting the jobs
appearing on the Jobs listbox in the main xpbs window. Specify value as
"Account_Name: <account_name>". See -A option in “qselect” on page
183 of the PBS Professional Reference Guide for format of
<account_name>.

*selectCheckpoint
The Checkpoint attribute relationship (including the logical operator) to
consult when limiting the list of jobs appearing on the Jobs listbox in the
main xpbs window. Specify value as "Checkpoint: <checkpoint_arg>".
See -c option in “qselect” on page 183 of the PBS Professional Reference
Guide for format of <checkpoint_arg>.

*selectHold
The hold types string to look for in a job when limiting the jobs appearing
on the Jobs listbox in the main xpbs window. Specify value as
"Hold_Types: <hold_string>". See -h option in “qselect” on page 183 of the
PBS Professional Reference Guide for format of <hold_string>.

*selectPriority
The priority relationship (including the logical operator) to consult when
limiting the list of jobs appearing on the Jobs listbox in the main xpbs win-
dow. Specify value as "Priority: <priority_value>". See -p option in “qse-
lect” on page 183 of the PBS Professional Reference Guide for format of
<priority_value>.

*selectRerun
The Rerunable attribute to consult when limiting the list of jobs appearing
on the Jobs listbox in the main xpbs window. Specify value as "Rerunna-
ble: <rerun_val>". See -r option in “qselect” on page 183 of the PBS Pro-
fessional Reference Guide for format of <rerun_val>.

*selectJobName
Name of the job that will be checked when limiting the jobs appearing on
the Jobs listbox in the main xpbs window. Specify value as "Job_Name:
<jobname>". See -N option in “qselect” on page 183 of the PBS Profes-
sional Reference Guide for format of <jobname>.

*iconizeHostsView
A boolean value (True or False) indicating whether or not to iconize the
HOSTS region.
336 PBS Professional 12.1 User’s Guide

Using the xpbs GUI Chapter 16
*iconizeQueuesView
A boolean value (True or False) indicating whether or not to iconize the
QUEUES region.

*iconizeJobsView
A boolean value (True or False) indicating whether or not to iconize the
JOBS region.

*iconizeInfoView
A boolean value (True or False) indicating whether or not to iconize the
INFO region.

*jobResourceList
A curly-braced list of resource names as according to architecture known to
xpbs. The format is as follows:

{ <arch-type1> resname1 resname2 ... resnameN }

{ <arch-type2> resname1 resname2 ... resnameN }

{ <arch-typeN> resname1 resname2 ... resnameN }
PBS Professional 12.1 User’s Guide 337

Chapter 16 Using the xpbs GUI
338 PBS Professional 12.1 User’s Guide

Appendix B: License
Agreement
CAUTION!

PRIOR TO INSTALLATION OR USE OF THE SOFTWARE YOU MUST CONSENT TO
THE FOLLOWING SOFTWARE LICENSE TERMS AND CONDITIONS BY CLICKING
THE “I ACCEPT” BUTTON BELOW. YOUR ACCEPTANCE CREATES A BINDING
LEGAL AGREEMENT BETWEEN YOU AND ALTAIR. IF YOU DO NOT HAVE THE
AUTHORITY TO BIND YOUR ORGANIZATION TO THESE TERMS AND CONDI-
TIONS, YOU MUST CLICK “I DO NOT ACCEPT” AND THEN HAVE AN AUTHO-
RIZED PARTY IN THE ORGANIZATION THAT YOU REPRESENT ACCEPT THESE
TERMS.

IF YOU, OR THE ORGANIZATION THAT YOU REPRESENT, HAS A MASTER SOFT-
WARE LICENSE AGREEMENT (“MASTER SLA”) ON FILE AT THE CORPORATE
HEADQUARTERS OF ALTAIR ENGINEERING, INC. (“ALTAIR”), THE MASTER SLA
TAKES PRECEDENCE OVER THESE TERMS AND SHALL GOVERN YOUR USE OF
THE SOFTWARE.

MODIFICATION(S) OF THESE SOFTWARE LICENSE TERMS IS EXPRESSLY PRO-
HIBITED. ANY ATTEMTED MODIFICATION(S) WILL BE NONBINDING AND OF NO
FORCE OR EFFECT UNLESS EXPRESSLY AGREED TO IN WRITING BY AN AUTHO-
RIZED CORPORATE OFFICER OF ALTAIR. ANY DISPUTE RELATING TO THE
VALIDITY OF AN ALLEGED MODIFICATION SHALL BE DETERMINED IN
ALTAIR’S SOLE DISCRETION.
PBS Professional 12.1 User’s Guide 339

Altair Engineering, Inc. - Software License Agreement

THIS SOFTWARE LICENSE AGREEMENT, including any Additional Terms (together with
the “Agreement”), shall be effective as of the date of YOUR acceptance of these software
license terms and conditions (the “Effective Date”) and is between ALTAIR ENGINEERING,
INC., 1820 E. Big Beaver Road, Troy, MI 48083-2031, USA, a Michigan corporation
(“Altair”), and YOU, or the organization on whose behalf you have authority to accept these
terms (the “Licensee”). Altair and Licensee, intending to be legally bound, hereby agree as
follows:

1. DEFINITIONS. In addition to terms defined elsewhere in this Agreement, the follow-
ing terms shall have the meanings defined below for purposes of this Agreement:

Additional Terms. Additional Terms are those terms and conditions which are determined by
an Altair Subsidiary to meet local market conditions.

Documentation. Documentation provided by Altair or its resellers on any media for use with
the Products.

Execute. To load Software into a computer's RAM or other primary memory for execution by
the computer.

Global Zone: Software is licensed based on three Global Zones: the Americas, Europe and
Asia-Pacific. When Licensee has Licensed Workstations located in multiple Global Zones,
which are connected to a single License (Network) Server, a premium is applied to the stan-
dard Software License pricing for a single Global Zone.

ISV/Independent Software Vendor. A software company providing its products, (“ISV Soft-
ware”) to Altair's Licensees through the Altair License Management System using Altair
License Units.

License Log File. A computer file providing usage information on the Software as gathered
by the Software.

License Management System. The license management system (LMS) that accompanies the
Software and limits its use in accordance with this Agreement, and which includes a License
Log File.

License (Network) Server. A network file server that Licensee owns or leases located on
Licensee's premises and identified by machine serial number and/or HostID on the Order
Form.

License Units. A parameter used by the LMS to determine usage of the Software permitted
under this Agreement at any one time.

Licensed Workstations. Single-user computers located in the same Global Zone(s) that Lic-
ensee owns or leases that are connected to the License (Network) Server via local area net-
work or Licensee's private wide-area network.
340 PBS Professional 12.1 User’s Guide

Maintenance Release. Any release of the Products made generally available by Altair to its
Licensees with annual leases, or those with perpetual licenses who have an active mainte-
nance agreement in effect, that corrects programming errors or makes other minor changes to
the Software. The fees for maintenance and support services are included in the annual
license fee but perpetual licenses require a separate fee.

Order Form. Altair's standard form in either hard copy or electronic format that contains the
specific parameters (such as identifying Licensee's contracting office, License Fees, Software,
Support, and License (Network) Servers) of the transaction governed by this Agreement.

Products. Products include Altair Software, ISV Software, and/or Suppliers' software; and
Documentation related to all of the forgoing.

Proprietary Rights Notices. Patent, copyright, trademark or other proprietary rights notices
applied to the Products, packaging or media.

Software. The Altair software identified in the Order Form and any Updates or Maintenance
Releases.

Subsidiary. Subsidiary means any partnership, joint venture, corporation or other form of
enterprise in which a party possesses, directly or indirectly, an ownership interest of fifty per-
cent (50%) or greater, or managerial or operational control.

Suppliers. Any person, corporation or other legal entity which may provide software or doc-
uments which are included in the Software.

Support. The maintenance and support services provided by Altair pursuant to this Agree-
ment.

Templates. Human readable ASCII files containing machine-interpretable commands for use
with the Software.

Term. The term of licenses granted under this Agreement. Annual licenses shall have a 12-
month term of use unless stated otherwise on the Order Form. Perpetual licenses shall have a
term of twenty-five years. Maintenance agreements for perpetual licenses have a 12-month
term.

Update. A new version of the Products made generally available by Altair to its Licensees
that includes additional features or functionalities but is substantially the same computer code
as the existing Products.

2. LICENSE GRANT. Subject to the terms and conditions set forth in this Agreement,
Altair hereby grants Licensee, and Licensee hereby accepts, a limited, non-exclusive, non-
transferable license to: a) install the Products on the License (Network) Server(s) identified on
the Order Form for use only at the sites identified on the Order Form; b) execute the Products
on Licensed Workstations in accordance with the LMS for use solely by Licensee's employ-
ees, or its onsite Contractors who have agreed to be bound by the terms of this Agreement, for
Licensee's internal business use on Licensed Workstations within the Global Zone(s) as iden-
PBS Professional 12.1 User’s Guide 341

tified on the Order Form and for the term identified on the Order Form; c) make backup cop-
ies of the Products, provided that Altair's and its Suppliers' and ISV's Proprietary Rights
Notices are reproduced on each such backup copy; d) freely modify and use Templates, and
create interfaces to Licensee's proprietary software for internal use only using APIs provided
that such modifications shall not be subject to Altair's warranties, indemnities, support or
other Altair obligations under this Agreement; and e) copy and distribute Documentation
inside Licensee's organization exclusively for use by Licensee's employees and its onsite Con-
tractors who have agreed to be bound by the terms of this Agreement. A copy of the License
Log File shall be made available to Altair automatically on no less than a monthly basis. In the
event that Licensee uses a third party vendor for information technology (IT) support, the IT
company shall be permitted to access the Software only upon its agreement to abide by the
terms of this Agreement. Licensee shall indemnify, defend and hold harmless Altair for the
actions of its IT vendor(s).

3. RESTRICTIONS ON USE. Notwithstanding the foregoing license grant, Licensee
shall not do (or allow others to do) any of the following: a) install, use, copy, modify, merge,
or transfer copies of the Products, except as expressly authorized in this Agreement; b) use
any back-up copies of the Products for any purpose other than to replace the original copy
provided by Altair in the event it is destroyed or damaged; c) disassemble, decompile or
“unlock”, reverse translate, reverse engineer, or in any manner decode the Software or ISV
Software for any reason; d) sublicense, sell, lend, assign, rent, distribute, publicly display or
publicly perform the Products or Licensee's rights under this Agreement; e) allow use outside
the Global Zone(s) or User Sites identified on the Order Form; f) allow third parties to access
or use the Products such as through a service bureau, wide area network, Internet location or
time-sharing arrangement except as expressly provided in Section 2(b); g) remove any Propri-
etary Rights Notices from the Products; h) disable or circumvent the LMS provided with the
Products; or (i) link any software developed, tested or supported by Licensee or third parties
to the Products (except for Licensee's own proprietary software solely for Licensee's internal
use).

4. OWNERSHIP AND CONFIDENTIALITY. Licensee acknowledges that all applica-
ble rights in patents, copyrights, trademarks, service marks, and trade secrets embodied in the
Products are owned by Altair and/or its Suppliers or ISVs. Licensee further acknowledges
that the Products, and all copies thereof, are and shall remain the sole and exclusive property
of Altair and/or its Suppliers and ISVs. This Agreement is a license and not a sale of the Prod-
ucts. Altair retains all rights in the Products not expressly granted to Licensee herein. Licensee
acknowledges that the Products are confidential and constitute valuable assets and trade
secrets of Altair and/or its Suppliers and ISVs. Licensee agrees to take the same precautions
necessary to protect and maintain the confidentiality of the Products as it does to protect its
own information of a confidential nature but in any event, no less than a reasonable degree of
care, and shall not disclose or make them available to any person or entity except as expressly
provided in this Agreement. Licensee shall promptly notify Altair in the event any unautho-
rized person obtains access to the Products. If Licensee is required by any governmental
342 PBS Professional 12.1 User’s Guide

authority or court of law to disclose Altair's or its ISV's or its Suppliers' confidential informa-
tion, then Licensee shall immediately notify Altair before making such disclosure so that
Altair may seek a protective order or other appropriate relief. Licensee's obligations set forth
in Section 3 and Section 4 of this Agreement shall survive termination of this Agreement for
any reason. Altair's Suppliers and ISVs, as third party beneficiaries, shall be entitled to
enforce the terms of this Agreement directly against Licensee as necessary to protect Sup-
plier's intellectual property or other rights.

Altair and its resellers providing support and training to licensed end users of the Products
shall keep confidential all Licensee information provided to Altair in order that Altair may
provide Support and training to Licensee. Licensee information shall be used only for the
purpose of assisting Licensee in its use of the licensed Products. Altair agrees to take the
same precautions necessary to protect and maintain the confidentiality of the Licensee infor-
mation as it does to protect its own information of a confidential nature but in any event, no
less than a reasonable degree of care, and shall not disclose or make them available to any
person or entity except as expressly provided in this Agreement.

5. MAINTENANCE AND SUPPORT. Maintenance. Altair will provide Licensee, at no
additional charge for annual licenses and for a maintenance fee for paid-up licenses, with
Maintenance Releases and Updates of the Products that are generally released by Altair dur-
ing the term of the licenses granted under this Agreement, except that this shall not apply to
any Term or Renewal Term for which full payment has not been received. Altair does not
promise that there will be a certain number of Updates (or any Updates) during a particular
year. If there is any question or dispute as to whether a particular release is a Maintenance
Release, an Update or a new product, the categorization of the release as determined by Altair
shall be final. Licensee agrees to install Maintenance Releases and Updates promptly after
receipt from Altair. Maintenance Releases and Updates are subject to this Agreement. Altair
shall only be obligated to provide support and maintenance for the most current release of the
Software and the most recent prior release. Support. Altair will provide support via tele-
phone and email to Licensee at the fees, if any, as listed on the Order Form. If Support has not
been procured for any period of time for paid-up licenses, a reinstatement fee shall apply.
Support consists of responses to questions from Licensee's personnel related to the use of the
then-current and most recent prior release version of the Software. Licensee agrees to provide
Altair with sufficient information to resolve technical issues as may be reasonably requested
by Altair. Licensee agrees to the best of its abilities to read, comprehend and follow operating
instructions and procedures as specified in, but not limited to, Altair's Documentation and
other correspondence related to the Software, and to follow procedures and recommendations
provided by Altair in an effort to correct problems. Licensee also agrees to notify Altair of a
programming error, malfunction and other problems in accordance with Altair's then current
problem reporting procedure. If Altair believes that a problem reported by Licensee may not
be due to an error in the Software, Altair will so notify Licensee. Questions must be directed
to Altair's specially designated telephone support numbers and email addresses. Support will
also be available via email at Internet addresses designated by Altair. Support is available
PBS Professional 12.1 User’s Guide 343

Monday through Friday (excluding holidays) from 8:00 a.m. to 5:00 p.m local time in the
Global Zone where licensed, unless stated otherwise on the Order Form. Exclusions. Altair
shall have no obligation to maintain or support (a) altered, damaged or Licensee-modified
Software, or any portion of the Software incorporated with or into other software not provided
by Altair; (b) any version of the Software other than the current version of the Software or the
immediately prior release of the Software; (c) problems caused by Licensee's negligence,
abuse or misapplication of Software other than as specified in the Documentation, or other
causes beyond the reasonable control of Altair; or (d) Software installed on any hardware,
operating system version or network environment that is not supported by Altair. Support
also excludes configuration of hardware, non- Altair Software, and networking services; con-
sulting services; general solution provider related services; and general computer system
maintenance.

6. WARRANTY AND DISCLAIMER. Altair warrants for a period of ninety (90) days
after Licensee initially receives the Software that the Software will perform under normal use
substantially as described in then current Documentation. Supplier software included in the
Software and ISV Software provided to Licensee shall be warranted as stated by the Supplier
or the ISV. Copies of the Suppliers' and ISV's terms and conditions of warranty are available
on the Altair Support website. Support services shall be provided in a workmanlike and pro-
fessional manner, in accordance with the prevailing standard of care for consulting support
engineers at the time and place the services are performed.

ALTAIR DOES NOT REPRESENT OR WARRANT THAT THE PRODUCTS WILL
MEET LICENSEE'S REQUIREMENTS OR THAT THEIR OPERATION WILL BE
UNINTERRUPTED OR ERROR-FREE, OR THAT IT WILL BE COMPATIBLE
WITH ANY PARTICULAR HARDWARE OR SOFTWARE. ALTAIR EXCLUDES
AND DISCLAIMS ALL EXPRESS AND IMPLIED WARRANTIES NOT STATED
HEREIN, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. THE
ENTIRE RISK FOR THE PERFORMANCE, NON-PERFORMANCE OR RESULTS
OBTAINED FROM USE OF THE PRODUCTS RESTS WITH LICENSEE AND NOT
ALTAIR. ALTAIR MAKES NO WARRANTIES WITH RESPECT TO THE ACCU-
RACY, COMPLETENESS, FUNCTIONALITY, SAFETY, PERFORMANCE, OR ANY
OTHER ASPECT OF ANY DESIGN, PROTOTYPE OR FINAL PRODUCT DEVEL-
OPED BY LICENSEE USING THE PRODUCTS.

7. INDEMNITY. Altair will defend and indemnify, at its expense, any claim made against
Licensee based on an allegation that the Software infringes a patent or copyright (“Claim”);
provided, however, that this indemnification does not include claims which are based on Sup-
plier software or ISV software, and that Licensee has not materially breached the terms of this
Agreement, Licensee notifies Altair in writing within ten (10) days after Licensee first learns
of the Claim; and Licensee cooperates fully in the defense of the claim. Altair shall have sole
control over such defense; provided, however, that it may not enter into any settlement bind-
344 PBS Professional 12.1 User’s Guide

ing upon Licensee without Licensee's consent, which shall not be unreasonably withheld. If a
Claim is made, Altair may modify the Software to avoid the alleged infringement, provided
however, that such modifications do not materially diminish the Software's functionality. If
such modifications are not commercially reasonable or technically possible, Altair may termi-
nate this Agreement and refund to Licensee the prorated license fee that Licensee paid for the
then current Term. Perpetual licenses shall be pro-rated over a 36-month term. Altair shall
have no obligation under this Section 7, however, if the alleged infringement arises from
Altair's compliance with specifications or instructions prescribed by Licensee, modification
of the Software by Licensee, use of the Software in combination with other software not pro-
vided by Altair and which use is not specifically described in the Documentation, and if Lic-
ensee is not using the most current version of the Software, if such alleged infringement
would not have occurred except for such exclusions listed here. This section 7 states Altair's
entire liability to Licensee in the event a Claim is made. No indemnification is made for Sup-
plier and/or ISV Software.

8. LIMITATION OF REMEDIES AND LIABILITY. Licensee's exclusive remedy
(and Altair's sole liability) for Software that does not meet the warranty set forth in Section 6
shall be, at Altair's option, either (i) to correct the nonconforming Software within a reason-
able time so that it conforms to the warranty; or (ii) to terminate this Agreement and refund to
Licensee the license fees that Licensee has paid for the then current Term for the nonconform-
ing Software; provided, however that Licensee notifies Altair of the problem in writing within
the applicable Warranty Period when the problem first occurs. Any corrected Software shall
be warranted in accordance with Section 6 for ninety (90) days after delivery to Licensee.
The warranties hereunder are void if the Software has been improperly installed, misused, or
if Licensee has violated the terms of this Agreement.

 Altair's entire liability for all claims arising under or related in any way to this Agreement
(regardless of legal theory), shall be limited to direct damages, and shall not exceed, in the
aggregate for all claims, the license and maintenance fees paid under this Agreement by Lic-
ensee in the 12 months prior to the claim on a prorated basis, except for claims under Section
7. ALTAIR AND ITS SUPPLIERS AND ISVS SHALL NOT BE LIABLE TO LICENSEE
OR ANYONE ELSE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES ARISING HEREUNDER (INCLUDING LOSS OF PROFITS OR DATA,
DEFECTS IN DESIGN OR PRODUCTS CREATED USING THE SOFTWARE, OR ANY
INJURY OR DAMAGE RESULTING FROM SUCH DEFECTS, SUFFERED BY LIC-
ENSEE OR ANY THIRD PARTY) EVEN IF ALTAIR OR ITS SUPPLIERS OR ITS ISVS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Licensee
acknowledges that it is solely responsible for the adequacy and accuracy of the input of data,
including the output generated from such data, and agrees to defend, indemnify, and hold
harmless Altair and its Suppliers and ISVs from any and all claims, including reasonable
attorney's fees, resulting from, or in connection with Licensee's use of the Software. No
PBS Professional 12.1 User’s Guide 345

action, regardless of form, arising out of the transactions under this Agreement may be
brought by either party against the other more than two (2) years after the cause of action has
accrued, except for actions related to unpaid fees.

9. UNITED STATES GOVERNMENT RESTRICTED RIGHTS. This section applies to
all acquisitions of the Products by or for the United States government. By accepting delivery
of the Products except as provided below, the government or the party procuring the Products
under government funding, hereby agrees that the Products qualify as “commercial” computer
software as that term is used in the acquisition regulations applicable to this procurement and
that the government's use and disclosure of the Products is controlled by the terms and condi-
tions of this Agreement to the maximum extent possible. This Agreement supersedes any
contrary terms or conditions in any statement of work, contract, or other document that are not
required by statute or regulation. If any provision of this Agreement is unacceptable to the
government, Vendor may be contacted at Altair Engineering, Inc., 1820 E. Big Beaver Road,
Troy, MI 48083-2031; telephone (248) 614-2400. If any provision of this Agreement violates
applicable federal law or does not meet the government's actual, minimum needs, the govern-
ment agrees to return the Products for a full refund.

 For procurements governed by DFARS Part 227.72 (OCT 1998), the Software, except as
described below, is provided with only those rights specified in this Agreement in accordance
with the Rights in Commercial Computer Software or Commercial Computer Software Docu-
mentation policy at DFARS 227.7202-3(a) (OCT 1998). For procurements other than for the
Department of Defense, use, reproduction, or disclosure of the Software is subject to the
restrictions set forth in this Agreement and in the Commercial Computer Software - Restricted
Rights FAR clause 52.227-19 (June 1987) and any restrictions in successor regulations
thereto.

Portions of Altair's PBS Professional Software and Documentation are provided with
RESTRICTED RIGHTS. Use, duplication, or disclosure by the Government is subject to
restrictions as set forth in subdivision(c)(1)(ii) of the rights in the Technical Data and Com-
puter Software clause in DFARS 252.227-7013, or in subdivision (c)(1) and (2) of the Com-
mercial Computer Software-Restricted Rights clause at 48 CFR52.227-19, as applicable.

10. CHOICE OF LAW AND VENUE. This Agreement shall be governed by and construed
under the laws of the state of Michigan, without regard to that state's conflict of laws princi-
ples except if the state of Michigan adopts the Uniform Computer Information Transactions
Act drafted by the National Conference of Commissioners of Uniform State Laws as revised
or amended as of June 30, 2002 (“UCITA”) which is specifically excluded. This Agreement
shall not be governed by the United Nations Convention on Contracts for the International
Sale of Goods, the application of which is expressly excluded. Each Party waives its right to
a jury trial in the event of any dispute arising under or relating to this Agreement. Each party
agrees that money damages may not be an adequate remedy for breach of the provisions of
346 PBS Professional 12.1 User’s Guide

this Agreement, and in the event of such breach, the aggrieved party shall be entitled to seek
specific performance and/or injunctive relief (without posting a bond or other security) in
order to enforce or prevent any violation of this Agreement.

11. [RESERVED]

12. Notice. All notices given by one party to the other under the Agreement or these Addi-
tional Terms shall be sent by certified mail, return receipt requested, or by overnight courier,
to the respective addresses set forth in this Agreement or to such other address either party has
specified in writing to the other. All notices shall be deemed given upon actual receipt.

Written notice shall be made to:

Altair: Licensee Name & Address:

Altair Engineering, Inc._________________________________

1820 E. Big Beaver Rd_________________________________

Troy, MI 48083_________________________________

Attn: Tom M. Perring _______________________

13. TERM. For annual licenses, or Support provided for perpetual licenses, renewal shall
be automatic for each successive year (“Renewal Term”), upon mutual written execution of a
new Order Form. All charges and fees for each Renewal Term shall be set forth in the Order
Form executed for each Renewal Term. All Software licenses procured by Licensee may be
made coterminous at the written request of Licensee and the consent of Altair.

14. TERMINATION. Either party may terminate this Agreement upon thirty (30) days
prior written notice upon the occurrence of a default or material breach by the other party of
its obligations under this Agreement (except for a breach by Altair of the warranty set forth in
Section 8 for which a remedy is provided under Section 10; or a breach by Licensee of Sec-
tion 5 or Section 6 for which no cure period is provided and Altair may terminate this Agree-
ment immediately) if such default or breach continues for more than thirty (30) days after
receipt of such notice. Upon termination of this Agreement, Licensee must cease using the
Software and, at Altair's option, return all copies to Altair, or certify it has destroyed all such
copies of the Software and Documentation.

15. GENERAL PROVISIONS. Export Controls. Licensee acknowledges that the Prod-
ucts may be subject to the export control laws and regulations of the United States and other
countries, and any amendments thereof. Licensee agrees that Licensee will not directly or
indirectly export the Products into any country or use the Products in any manner except in
compliance with all applicable U.S. and other countries export laws and regulations. Notice.
All notices given by one party to the other under this Agreement shall be sent by certified
mail, return receipt requested, or by overnight courier, to the respective addresses set forth in
this Agreement or to such other address either party has specified in writing to the other. All
PBS Professional 12.1 User’s Guide 347

notices shall be deemed given upon actual receipt. Assignment. Neither party shall assign
this Agreement without the prior written consent of other party, which shall not be unreason-
ably withheld. All terms and conditions of this Agreement shall be binding upon and inure to
the benefit of the parties hereto and their respective successors and permitted assigns. Waiver.
The failure of a party to enforce at any time any of the provisions of this Agreement shall not
be construed to be a waiver of the right of the party thereafter to enforce any such provisions.
Severability. If any provision of this Agreement is found void and unenforceable, such provi-
sion shall be interpreted so as to best accomplish the intent of the parties within the limits of
applicable law, and all remaining provisions shall continue to be valid and enforceable. Head-
ings. The section headings contained in this Agreement are for convenience only and shall
not be of any effect in constructing the meanings of the Sections. Modification. No change
or modification of this Agreement will be valid unless it is in writing and is signed by a duly
authorized representative of each party. Conflict. In the event of any conflict between the
terms of this Agreement and any terms and conditions on a Licensee Purchase Order or com-
parable document, the terms of this Agreement shall prevail. Moreover, each party agrees any
additional terms on any Purchase Order or comparable document other than the transaction
items of (a) item(s) ordered; (b) pricing; (c) quantity; (d) delivery instructions and (e) invoic-
ing directions, are not binding on the parties. In the event of a conflict between the terms of
this Agreement, and the Additional Terms, the Agreement shall take precedence. Entire
Agreement. This Agreement, the Additional Terms, and the Order Form(s) attached hereto
constitute the entire understanding between the parties related to the subject matter hereto,
and supersedes all proposals or prior agreements, whether written or oral, and all other com-
munications between the parties with respect to such subject matter. This Agreement may be
executed in one or more counterparts, all of which together shall constitute one and the same
instrument. Execution. Copies of this Agreement executed via original signatures, facsimile
or email shall be deemed binding on the parties.
348 PBS Professional 12.1 User’s Guide

Index
A
accelerator 262
accelerator_memory 262
accelerator_model 262
accounting 316
ACCT_TMPDIR 316
Advance reservation

creation 185
advance reservation 183
AIX 118

Large Page Mode 315
AOE 289

using 290
application licenses

floating 75
node-locked

per-CPU 77
arrangement 90

B
blocking jobs 173

C
Changing

order of jobs 231
chunk 71, 73
chunk-level resource 71

commands 9
and provisioning 293

comment 244
count_spec 186
CSA 316
cygwin 27

D
Deleting Jobs 228
dependencies

xpbs 160
Deprecations 4
devtype 120
directive 60, 332
Display

non-running jobs 243

E
euidevice 120
euilib 120
exclhost 90
exclusive 90
Exit Status

job arrays 212
PBS Professional 12.1 User’s Guide 349

Index
F
file

staging 49
Files

pbs.conf 334
xpbsrc 334, 334

floating licenses 75
free 90
freq_spec 186

G
group=resource 90, 91
grouping 90

H
here document 37
hfile 120
Hitchhiker’s Guide 122
hostfile 120
HPC Basic Profile 297
HPC Basic Profile Job 297
HPC Basic Profile Server 297
HPCBP

Executable location 299
Job resources 302
Job submission requirements 300
Monitoring jobs 304
Password requirement 299
qsub command 301
qsub syntax 301
Submitting jobs 299
Unsupported commands 311
User account 298

HPCBP Job 297
HPCBP MoM 297

I
identifier 23
Identifier Syntax 203
InfiniBand 145, 146
instance 183

instance of a standing reservation 183
instances

option 121
Intel MPI

examples 127
interval_spec 187

J
ja 316
Job

comment 244
dependencies 158
sending messages to 229
sending signals to 230
submission options 39
tracking 257

job
definition 9
identifier 23

Job Array
States 204

job array
identifier 201
range 201

Job Arrays 201
exit status 212
prologues and epilogues 205

job dependencies
xpbs 160

Job Submission Description Language 297
Job Submission Options 39
job-wide resource 71, 73
JSDL 297

L
Large Page Mode 315
Limits on Resource Usage 85
Listbox 320

M
max_walltime 164
350 PBS Professional 12.1 User’s Guide

Index
min_walltime 164
Modifying Job Attributes 225
MoM 9
Monitoring 8
Moving

jobs between queues 233
MP_DEVTYPE 120
MP_EUIDEVICE 120
MP_EUILIB 120
MP_HOSTFILE 120
MP_INSTANCES 121
MP_PROCS 121
MPI

Intel MPI
examples 127

MPICH_GM
rsh/ssh

examples 135
MPICH2

examples 143, 147
MPICH-GM

MPD
examples 134

MPICH-MX
MPD

examples 137
rsh/ssh

examples 139
MVAPICH1 144

examples 145
MPI, LAPI 118
MPICH 131
MPICH_GM

rsh/ssh
examples 135

MPICH2
examples 143, 147

MPICH-GM
MPD

examples 134

MPICH-MX
MPD

examples 137
rsh/ssh

examples 139
MPI-OpenMP 154
MVAPICH1 144

examples 145

N
naccelerators 263
nchunk 263
nqs2pbs 10

O
OpenMP 153

P
pack 90
Parallel Virtual Machine (PVM) 151
password

single-signon 37
Windows 37, 37

PBS Environmental Variables 205
PBS_ARRAY_ID 205
PBS_ARRAY_INDEX 205
PBS_DEFAULT_SERVER 334
pbs_hostn 11
PBS_JOBID 205
pbs_migrate_users 11
pbs_password 10, 37, 37
pbs_probe 11
pbs_python 10
pbs_rdel 10
pbs_rstat 10
pbs_rsub 10
pbs_tclsh 11
PBScrayhost 264
PBScraylabel 264
PBScraynid 265
PBScrayorder 265
PBS Professional 12.1 User’s Guide 351

Index
pbsdsh 10
pbsfs 11
pbsnodes 11
pbs-report 11
per-CPU node-locked licenses 77
POE 118
poe

examples 123
printjob 11
procs 121
Prologues and Epilogues

job arrays 205
provision 289
provisioned vnode 289
provisioning 291

allowing time 294
and commands 293
AOE restrictions 292
host restrictions 291
requesting 293
using AOE 290
vnodes 290

PVM (Parallel Virtual Machine 151

Q
qalter 10, 329
qdel 10, 329
qdisable 12, 329
qenable 12, 329
qhold 10, 171, 329
qmgr 12
qmove 10, 233, 329
qmsg 11, 229, 329
qorder 11, 231, 232, 330
qrerun 12, 329
qrls 11, 172, 329
qrun 12, 329
qselect 11, 254, 255
qsig 11, 329
qstart 12, 329
qstat 11, 171, 227, 227, 232, 232, 237, 238,
238, 239, 241, 242, 242, 242, 243, 243,

243, 244, 251, 251, 252, 254, 254, 255, 329
qstop 12, 329
qsub 11, 329, 329
qsub options 39
qterm 12, 329
Queuing 7
Quick Start Guide vii

R
recurrence rule 186
report 316
requesting provisioning 293
Reservation

deleting 190
reservation

advance 183, 185
degraded 184
instance 183
Setting start time & duration 187
soonest occurrence 184
standing 183

instance 183
soonest occurrence 184

standing reservation 186
Submitting jobs 194

reservations
time for provisioning 294

resource
job-wide 71, 73

Resource_List 40
restrictions

AOE 292
provisioning hosts 291

resv_nodes 184

S
scatter 90
scheduler 9
Scheduling 8
sequence number 201
server 9
352 PBS Professional 12.1 User’s Guide

Index
setting job attributes 28
share 91
sharing 90
SIGKILL 230
SIGNULL 230
SIGTERM 230
single-signon 37
Single-Signon Password Method 37
soonest occurrence 184
stageout 41
standing reservation 183, 186
States

job array 204
states 335
subjob 202
subjob index 202
submission options 39
Submitting a PBS Job 21
syntax

identifier 203

T
TCL 319
time between reservations 199
TK 319
tracejob 11
tracking 257

U
until_spec 187
User Guide vii
user job accounting 316

V
Vnode Types 69
vnodes

provisioning 290
vntype 264
vscatter 90

W
waiting for job completion 173
Widgets 320
Windows

password 37, 37

X
xpbs 11, 330, 334, 334, 335, 337

buttons 329
configuration 334
job dependencies 160
usage 230, 231, 256, 319

xpbsmon 12
xpbsrc 333
PBS Professional 12.1 User’s Guide 353

Index
354 PBS Professional 12.1 User’s Guide

	About PBS Documentation
	New Features
	1.1 New Features
	1.1.1 New Features in PBS Professional 12.0
	1.1.1.1 Shrink-to-fit Jobs

	1.1.2 New Features in PBS Professional 11.3
	1.1.2.1 Deleting Moved and Finished Jobs

	1.1.3 New Features in PBS Professional 11.2
	1.1.3.1 Grouping Jobs by Project
	1.1.3.2 Support for Accelerators on Cray
	1.1.3.3 Support for X Forwarding for Interactive Jobs

	1.1.4 New Features in PBS Professional 11.1
	1.1.4.1 Support for Interlagos Hardware

	1.1.5 New Features in PBS Professional 11.0
	1.1.5.1 Improved Cray Integration
	1.1.5.2 Enhanced Job Placement

	1.1.6 New Features in PBS Professional 10.4
	1.1.6.1 Estimated Job Start Times
	1.1.6.2 Unified Job Submission

	1.1.7 New Features in PBS Professional 10.2
	1.1.7.1 Provisioning
	1.1.7.2 Walltime as Checkpoint Interval Measure
	1.1.7.3 Employing User Space Mode on IBM InfiniBand Switches

	1.1.8 New Features in Version 10.1
	1.1.8.1 Submitting HPCBP Jobs
	1.1.8.2 Using Job History Information
	1.1.8.3 Reservation Fault Tolerance

	1.1.9 New Features in Recent Releases
	1.1.9.1 Path to Binaries (10.0)
	1.1.9.2 Job-Specific Staging and Execution Directories (9.2)
	1.1.9.3 Standing Reservations (9.2)

	1.2 Deprecations
	1.3 Backward Compatibility
	1.3.1 Job Dependencies Affected By Job History
	1.3.2 PBS path information no longer saved in AUTOEXEC.BAT
	1.3.3 Submitting Jobs with Old Syntax

	Getting Started With PBS
	2.1 Why Use PBS?
	2.2 PBS Tasks and Components
	2.2.1 PBS Tasks
	2.2.2 PBS Components

	2.3 Interfaces to PBS
	2.3.1 PBS Commands

	2.4 Setting Up Your Environment
	2.4.1 Prerequisites for Account
	2.4.2 Setting Up Your UNIX/Linux Environment
	2.4.2.1 Set Paths to PBS Commands
	2.4.2.2 Set Paths to PBS Man Pages
	2.4.2.3 Make Login and Logout Files Behave Properly for Jobs
	2.4.2.4 Capture Correct Job Exit Status
	2.4.2.5 Avoid Background Processes Inside Jobs
	2.4.2.6 Provide bash Functions to Jobs

	2.4.3 Setting Up Your Windows Environment
	2.4.3.1 HOMEDIR for Windows Users
	2.4.3.2 Requirements for Windows Username
	2.4.3.3 Requirements for Windows User Account
	2.4.3.4 Allow Job Submission and Return of Output

	2.4.4 Setting Up Your User Authorization
	2.4.4.1 User Authorization Under UNIX/Linux
	2.4.4.2 User Authorization Under Windows

	2.4.5 Setting the Submission Host’s Time Zone

	Submitting a PBS Job
	3.1 Introduction to the PBS Job
	3.1.1 Lifecycle of a PBS Job, Briefly
	3.1.2 Where and How Your PBS Job Runs
	3.1.3 The Job Identifier
	3.1.4 Your Job’s Shell Script(s)
	3.1.5 Scratch Space for Jobs
	3.1.6 Types of Jobs
	3.1.7 Job Input and Output Files

	3.2 The PBS Job Script
	3.2.1 Overview of a Job Script
	3.2.2 Types of Job Scripts
	3.2.2.1 UNIX Shell Scripts
	3.2.2.2 Python Job Scripts
	3.2.2.3 Windows Job Scripts

	3.2.3 Setting Job Characteristics
	3.2.3.1 Job Attributes
	3.2.3.2 Job Resources
	3.2.3.3 Setting Job Attributes
	3.2.3.4 Using PBS Directives

	3.2.4 Job Tasks
	3.2.5 Job Script Names
	3.2.5.1 How PBS Parses a Job Script

	3.3 Submitting a PBS Job
	3.3.1 Prerequisites for Submitting Jobs
	3.3.2 Ways to Submit a PBS Job
	3.3.3 Submitting a Job Using a Script
	3.3.3.1 Specifying the Job’s Top Shell
	3.3.3.2 Specifying Job Script Shell or Interpreter
	3.3.3.3 Examples of Submitting Jobs Using Scripts
	3.3.3.4 Passing Arguments to Jobs

	3.3.4 Submitting Jobs by Specifying Executable
	3.3.5 Submitting Jobs Using Keyboard Input
	3.3.6 Submitting Jobs Under Windows
	3.3.6.1 Passwords

	3.4 Job Submission Recommendations and Advice
	3.4.1 Trapping Signals in Script

	3.5 Job Submission Options
	3.5.1 Specifying Email Notification
	3.5.1.1 Specifying Job Lifecycle Email Points
	3.5.1.2 Setting Email Recipient List
	3.5.1.3 Restricting Number of Job Deletion Emails
	3.5.1.4 Windows Caveats for Email

	3.5.2 Specifying Job Name
	3.5.3 Specifying a Job’s Project
	3.5.4 Specifying Job Username
	3.5.4.1 Caveats for Changing Job Username

	3.5.5 Specifying Job Group ID
	3.5.5.1 Group Names Under Windows

	3.5.6 Specifying Accounting String
	3.5.7 Suppressing Printing Job Identifier to stdout
	3.5.8 Specifying Server and/or Queue
	3.5.8.1 Using or Avoiding Dedicated Time

	Job Input and Output Files
	4.1 Introduction to Job File I/O in PBS
	4.2 Input/Output File Staging
	4.2.1 Staging and Execution Directory: User’s Home vs. Job-specific
	4.2.2 Using Job-specific Staging and Execution Directories
	4.2.2.1 Setting the Job’s Staging and Execution Directory
	4.2.2.2 The Job’s jobdir Attribute and the PBS_JOBDIR Environment Variable

	4.2.3 Attributes and Environment Variables Affecting Staging
	4.2.4 Specifying Files To Be Staged In or Staged Out
	4.2.5 Caveats and Requirements for Staging
	4.2.5.1 Staging and Windows Paths
	4.2.5.2 Path Names for Staging
	4.2.5.3 Required Permissions
	4.2.5.4 Warning About Ampersand
	4.2.5.5 Interactive Jobs and File I/O
	4.2.5.6 Copying Directories Into and Out Of the Staging and Execution Directory
	4.2.5.7 Wildcards In File Staging

	4.2.6 Examples of File Staging
	4.2.6.1 Example of Using Job-specific Staging and Execution Directories

	4.2.7 Summary of the Job’s Lifecycle
	4.2.8 Detailed Description of Job’s Lifecycle
	4.2.8.1 Creation of TMPDIR
	4.2.8.2 Choice of Staging and Execution Directories
	4.2.8.3 Setting Environment Variables and Attributes
	4.2.8.4 Staging Files Into Staging and Execution Directories
	4.2.8.5 Running the Prologue
	4.2.8.6 Job Execution
	4.2.8.7 Standard Out and Standard Error
	4.2.8.8 Running the Epilogue
	4.2.8.9 Staging Files Out and Removing Execution Directory
	4.2.8.10 Removing TMPDIRs

	4.2.9 Staging with Job Arrays
	4.2.10 Using xpbs for File Staging
	4.2.11 Stagein and Stageout Failure
	4.2.11.1 File Stagein Failure
	4.2.11.2 File Stageout Failure

	4.3 Managing Output and Error Files
	4.3.1 Default Behavior
	4.3.2 Paths for Output and Error Files
	4.3.2.1 Default Paths
	4.3.2.2 Specifying Paths
	4.3.2.3 Specifying Paths from Windows Hosts
	4.3.2.4 Caveats for Paths

	4.3.3 Avoiding Creation of stdout and/or stderr
	4.3.4 Merging Output and Error Files
	4.3.5 Keeping Output and Error Files on Execution Host
	4.3.5.1 Caveats for Keeping Files on Execution Host

	4.3.6 Changing UNIX/Linux Job umask
	4.3.6.1 Caveats

	4.3.7 Troubleshooting File Delivery
	4.3.7.1 Non-delivery of Output

	4.3.8 Caveats for Output and Error Files
	4.3.8.1 Retaining Files on Execution Host
	4.3.8.2 Standard Output and Error Appended When Job is Rerun
	4.3.8.3 Windows Mapped Drives and PBS
	4.3.8.4 Harmless csh Error Message
	4.3.8.5 Interactive Jobs and File I/O
	4.3.8.6 Write Permissions Required

	Allocating Resources & Placing Jobs
	5.1 What is a Vnode?
	5.1.1 Deprecated Vnode Types

	5.2 PBS Resources
	5.2.1 Introduction to PBS Resources
	5.2.2 Terminology

	5.3 Requesting Resources
	5.3.1 Quick Summary of Requesting Resources
	5.3.2 Requesting Job-wide Resources
	5.3.3 Requesting Resources in Chunks
	5.3.4 Requesting Boolean Resources
	5.3.5 Requesting Application Licenses
	5.3.5.1 Requesting Floating Application Licenses
	5.3.5.2 Requesting Node-locked Application Licenses

	5.3.6 Requesting Scratch Space
	5.3.7 Requesting GPUs
	5.3.7.1 Binding to GPUs
	5.3.7.2 Requesting Non-specific GPUs and Exclusive Use of Node
	5.3.7.3 Requesting Non-specific GPUs and Shared Use of Node
	5.3.7.4 Requesting Specific GPUs
	5.3.7.5 Viewing GPU Information for Nodes

	5.3.8 Caveats and Restrictions on Requesting Resources
	5.3.8.1 Caveats and Restrictions for Specifying Resource Values
	5.3.8.2 Warning About NOT Requesting walltime
	5.3.8.3 Caveats for Jobs Requesting Undefined Resources
	5.3.8.4 Matching Resource Requests with Unset Resources
	5.3.8.5 Caveat for Invisible or Unrequestable Resources
	5.3.8.6 Warning About Requesting Tiny Amounts of Memory
	5.3.8.7 Maximum Length of Job Submission Command Line
	5.3.8.8 Only One select Statement Per Job
	5.3.8.9 The software Resource is Job-wide
	5.3.8.10 Do Not Mix Old and New Syntax

	5.4 How Resources are Allocated to Jobs
	5.4.1 Applying Default Resources
	5.4.1.1 Applying Job-wide Default Resources
	5.4.1.2 Applying Per-chunk Default Resources
	5.4.1.3 Caveat for Moving Jobs From One Queue to Another

	5.5 Limits on Resource Usage
	5.5.1 Enforceable Resource Limits
	5.5.2 Origins of Resource Limits
	5.5.3 Job-wide Resource Limits
	5.5.4 Per-chunk Resource Limits
	5.5.4.1 Effects of Limits

	5.5.5 Examples of Memory Limits

	5.6 Viewing Resources
	5.6.1 Viewing Server, Queue, and Vnode Resources
	5.6.2 Viewing Job Resources
	5.6.2.1 Resources Shown in Job’s Resource_List Attribute

	5.7 Specifying Job Placement
	5.7.1 Using the place Statement
	5.7.1.1 Specifying Arrangement of Chunks
	5.7.1.2 Specifying Shared or Exclusive Use of Vnodes
	5.7.1.3 Grouping on a Resource

	5.7.2 How the Job Gets its Place Statement
	5.7.3 Caveats and Restrictions for Specifying Placement
	5.7.4 Examples of Specifying Placement

	5.8 Backward Compatibility
	5.8.1 Old-style Resource Specifications
	5.8.2 Old-style Node Specifications
	5.8.3 Conversion of Old Style to New
	5.8.3.1 Conversion of Resource Specifications
	5.8.3.2 Conversion of Node Specifications
	5.8.3.3 Examples of Converting Old Syntax to New

	5.8.4 Caveats for Using Old Syntax
	5.8.4.1 Changes in Behavior
	5.8.4.2 Do Not Mix Old and New Styles
	5.8.4.3 Resource Request Conversion Dependent on Where Resources are Defined
	5.8.4.4 Properties are Deprecated
	5.8.4.5 Replace cpp with ncpus
	5.8.4.6 Environment Variables Set During Conversion

	Multiprocessor Jobs
	6.1 Submitting Multiprocessor Jobs
	6.1.1 Assigning the Chunks You Want
	6.1.1.1 Specifying Primary Execution Host
	6.1.1.2 Request Most Specific Chunks First

	6.1.2 The Job’s Node File
	6.1.2.1 Node File Format and Contents
	6.1.2.2 Name and Location of Node File
	6.1.2.3 Node File for Old-style Requests
	6.1.2.4 Using and Modifying the Node File
	6.1.2.5 Node File Caveats
	6.1.2.6 Viewing Execution Hosts

	6.1.3 Specifying Number of MPI Processes Per Chunk
	6.1.3.1 Chunks With No MPI Processes

	6.1.4 Caveats and Advice for Multiprocessor Jobs
	6.1.4.1 Requesting Uniform Processors
	6.1.4.2 Requesting Storage on NFS Server

	6.1.5 File Staging for Multiprocessor Jobs
	6.1.6 Prologue and Epilogue
	6.1.7 MPI Environment Variables
	6.1.8 Examples of Multiprocessor Jobs
	6.1.9 Submitting SMP Jobs

	6.2 Using MPI with PBS
	6.2.1 Using an Integrated MPI
	6.2.1.1 Integration Caveats
	6.2.1.2 Integrating an MPI on the Fly using the pbs_tmrsh Command

	6.2.2 Prerequisites to Using MPI with PBS
	6.2.3 Caveats for Using MPIs
	6.2.4 HP MPI with PBS
	6.2.4.1 Setting up Your Environment for HP MPI
	6.2.4.2 Using HP MPI with PBS
	6.2.4.3 Options
	6.2.4.4 Caveats for HP MPI with PBS

	6.2.5 IBM POE with PBS
	6.2.5.1 Using the InfiniBand Switch
	6.2.5.2 Using the HPS
	6.2.5.3 Specifying Number of Ranks
	6.2.5.4 Restrictions on poe Jobs
	6.2.5.5 poe Options and Environment Variables
	6.2.5.6 Caveats for POE
	6.2.5.7 Useful Information
	6.2.5.8 Examples Using poe

	6.2.6 Intel MPI with PBS
	6.2.6.1 Using Intel MPI Integrated with PBS
	6.2.6.2 Options to Integrated Intel MPI
	6.2.6.3 MPD Startup and Shutdown
	6.2.6.4 Examples
	6.2.6.5 Restrictions

	6.2.7 LAM MPI with PBS
	6.2.7.1 Using LAM 7.x with PBS
	6.2.7.2 Using LAM 6.5.9 with PBS
	6.2.7.3 Example Job Submission Script
	6.2.7.4 See Also

	6.2.8 MPICH-P4 with PBS
	6.2.8.1 Options for MPICH-P4 with PBS
	6.2.8.2 Example of Using MPICH-P4 with PBS
	6.2.8.3 MPICH Under Windows

	6.2.9 MPICH-GM with PBS
	6.2.9.1 Using MPICH-GM and MPD with PBS
	6.2.9.2 Using MPICH-GM and rsh/ssh with PBS
	6.2.9.3 Restrictions

	6.2.10 MPICH-MX with PBS
	6.2.10.1 Using MPICH-MX and MPD with PBS
	6.2.10.2 Using MPICH-MX and rsh/ssh with PBS
	6.2.10.3 Restrictions

	6.2.11 MPICH2 with PBS
	6.2.11.1 Options
	6.2.11.2 MPD Startup and Shutdown
	6.2.11.3 Examples
	6.2.11.4 Restrictions

	6.2.12 MVAPICH with PBS
	6.2.12.1 Interface to MVAPICH mpirun Command
	6.2.12.2 Examples
	6.2.12.3 Restrictions

	6.2.13 MVAPICH2 with PBS
	6.2.13.1 Interface to MVAPICH2 mpiexec Command
	6.2.13.2 MPD Startup and Shutdown
	6.2.13.3 Examples
	6.2.13.4 Restrictions

	6.2.14 Open MPI with PBS
	6.2.14.1 Using Open MPI with PBS

	6.2.15 Platform MPI with PBS
	6.2.15.1 Using Platform MPI with PBS
	6.2.15.2 Setting up Your Environment

	6.2.16 SGI MPT with PBS
	6.2.16.1 Using SGI MPT with PBS
	6.2.16.2 Prerequisites
	6.2.16.3 Using Cpusets
	6.2.16.4 Fitting Jobs onto Nodeboards
	6.2.16.5 Checkpointing and Suspending Jobs
	6.2.16.6 Specifying Array Name
	6.2.16.7 Using CSA

	6.3 Using PVM with PBS
	6.3.1 Arguments to pvmexec Command
	6.3.2 Using PVM Daemons
	6.3.3 Submitting a PVM Job
	6.3.4 Examples

	6.4 Using OpenMP with PBS
	6.4.1 Running Fewer Threads than CPUs
	6.4.2 Running More Threads than CPUs
	6.4.3 Caveats for Using OpenMP with PBS

	6.5 Hybrid MPI-OpenMP Jobs
	6.5.1 Examples

	Controlling How Your Job Runs
	7.1 Using Job Exit Status
	7.1.1 Caveats for Exit Status

	7.2 Using Job Dependencies
	7.2.1 Syntax for Job Dependencies
	7.2.2 Job Dependency Examples
	7.2.3 Job Array Dependencies
	7.2.4 Using xpbs for Job Dependencies
	7.2.5 Caveats and Advice for Job Dependencies
	7.2.5.1 Correct Exit Status Required
	7.2.5.2 Permission Required for Dependencies
	7.2.5.3 Warning About Job History
	7.2.5.4 Error Reporting

	7.3 Adjusting Job Running Time
	7.3.1 Shrink-to-fit Jobs
	7.3.1.1 Requirements for a Shrink-to-fit Job
	7.3.1.2 Comparison Between Shrink-to-fit and Non-shrink-to- fit Jobs

	7.3.2 Using Shrink-to-fit Jobs
	7.3.3 Running Time of a Shrink-to-fit Job
	7.3.3.1 Setting Running Time Range for Shrink-to-fit Jobs
	7.3.3.2 Setting walltime for Shrink-to-fit Jobs

	7.3.4 Modifying Shrink-to-fit and Non-shrink-to-fit Jobs
	7.3.4.1 Modifying min_walltime and max_walltime

	7.3.5 Viewing Running Time for a Job
	7.3.5.1 Viewing min_walltime and max_walltime
	7.3.5.2 Viewing walltime for a Shrink-to-fit Job

	7.3.6 Lifecycle of a Shrink-to-fit Job
	7.3.6.1 Execution of Shrink-to-fit Jobs
	7.3.6.2 Termination of Shrink-to-fit Jobs

	7.3.7 The min_walltime and max_walltime Resources
	7.3.8 Caveats and Restrictions for Shrink-to-fit Jobs

	7.4 Using Checkpointing
	7.4.1 Prerequisites for Checkpointing
	7.4.2 Minimum Checkpoint Interval
	7.4.3 Syntax for Specifying Checkpoint Interval
	7.4.4 Using Checkpointing for Preempting or Holding Jobs
	7.4.5 Caveats and Restrictions for Checkpointing

	7.5 Holding and Releasing Jobs
	7.5.1 Types of Holds
	7.5.2 Requirements for Holding or Releasing a Job
	7.5.3 Holding a Job Before Execution
	7.5.4 Holding a Job During Execution
	7.5.4.1 Checkpointing and Requeueing the Job
	7.5.4.2 Setting a Running Job’s Hold Type

	7.5.5 Releasing a Job
	7.5.6 Caveats and Restrictions for Holding and Releasing Jobs
	7.5.7 Why is Your Job Held?
	7.5.8 Using xpbs to Hold or Release Jobs
	7.5.9 Examples of Holding and Releasing Jobs

	7.6 Allowing Your Job to be Re-run
	7.6.1 Caveats and Restrictions for Marking Jobs as Rerunnable

	7.7 Making qsub Wait Until Job Ends
	7.7.1 Signal Handling and Error Processing for Blocking Jobs
	7.7.2 Caveats for Blocking Jobs

	7.8 Deferring Execution
	7.8.1 Syntax for Deferring Execution

	7.9 Setting Your Job’s Priority
	7.10 Running Your Job Interactively
	7.10.1 Running Your Interactive Job
	7.10.2 Input and Output for Interactive Jobs
	7.10.3 Terminating Interactive Jobs
	7.10.4 Special Sequences for Interactive Jobs
	7.10.5 Caveats and Restrictions for Interactive Jobs
	7.10.6 Receiving X Output from Interactive Jobs
	7.10.6.1 How to Receive X Output
	7.10.6.2 Requirements for Receiving X Output
	7.10.6.3 Viewing X Output Job Attributes
	7.10.6.4 Caveats and Advice for Receiving X Output
	7.10.6.5 X Forwarding Errors

	7.10.7 Using Environment Variables
	7.10.7.1 Exporting All Environment Variables
	7.10.7.2 Exporting Specific Environment Variables
	7.10.7.3 Caveat for Environment Variables and Shell Functions

	7.10.8 Forwarding Exported Shell Functions
	7.10.9 Caveat for Interactive Jobs and File I/O

	Reserving Resources Ahead of Time
	8.1 Terminology
	8.2 Prerequisites for Reserving Resources
	8.3 Creating and Using Reservations
	8.3.1 Introduction to Creating and Using Reservations
	8.3.2 Creating Advance Reservations
	8.3.2.1 Setting Time Zone for Advance Reservations
	8.3.2.2 Examples of Creating Advance Reservations

	8.3.3 Creating Standing Reservations
	8.3.3.1 Setting Reservation Start Time and Duration
	8.3.3.2 Requirements for Creating Standing Reservations
	8.3.3.3 Examples of Creating Standing Reservations
	8.3.3.4 Getting Confirmation of a Reservation

	8.3.4 Deleting Reservations

	8.4 Viewing the Status of a Reservation
	8.4.1 Examples of Viewing Reservation Status Using pbs_rstat

	8.5 Using Your Reservation
	8.5.1 Submitting a Job to a Reservation
	8.5.2 Converting a Job into a Reservation Job
	8.5.3 Viewing Status of a Job Submitted to a Reservation
	8.5.4 How Reservations Treat Jobs
	8.5.4.1 Caveats for How Reservations Treat Jobs

	8.5.5 Who Can Use Your Reservation

	8.6 Reservation Caveats and Errors
	8.6.1 Time Zone Must be Correct
	8.6.2 Reservation Errors
	8.6.3 Time Required Between Reservations
	8.6.4 Cannot Mix Reservations and mpp*
	8.6.5 Reservation Information in the Accounting Log
	8.6.6 Reservation Fault Tolerance

	Job Arrays
	9.1 Advantages of Job Arrays
	9.2 Terminology
	9.3 Description of Job Arrays
	9.3.1 Job Script for Job Arrays
	9.3.2 Attributes and Resources for Job Arrays
	9.3.3 Scheduling Job Arrays and Subjobs
	9.3.3.1 Starving

	9.3.4 Identifier Syntax
	9.3.4.1 Examples of Using Identifier Syntax
	9.3.4.2 Shells and Array Identifiers

	9.3.5 Special Attributes for Job Arrays
	9.3.6 Job Array States
	9.3.7 PBS Environmental Variables for Job Arrays
	9.3.8 Accounting
	9.3.9 Prologues and Epilogues
	9.3.10 The “Rerunnable” Flag and Job Arrays

	9.4 Submitting a Job Array
	9.4.1 Job Array Submission Syntax
	9.4.2 Examples of Submitting Job Arrays
	9.4.3 File Staging for Job Arrays
	9.4.3.1 File Staging Syntax for Job Arrays
	9.4.3.2 Job Array Staging Syntax on Windows
	9.4.3.3 Job Array File Staging Caveats
	9.4.3.4 Examples of Staging for Job Arrays

	9.4.4 Filenames for Standard Output and Standard Error
	9.4.5 Job Array Dependencies
	9.4.5.1 Caveats for Job Array Dependencies

	9.4.6 Job Array Exit Status
	9.4.6.1 Making qsub Wait Until Job Array Finishes

	9.4.7 Caveats for Submitting Job Arrays
	9.4.7.1 No Interactive Job Submission of Job Arrays

	9.5 Viewing Status of a Job Array
	9.5.1 Example of Viewing Job Array Status

	9.6 Using PBS Commands with Job Arrays
	9.6.1 Deleting a Job Array
	9.6.2 Altering a Job Array
	9.6.3 Moving a Job Array
	9.6.4 Holding a Job Array
	9.6.5 Releasing a Job Array
	9.6.6 Selecting Job Arrays
	9.6.7 Ordering Job Arrays in the Queue
	9.6.8 Requeueing a Job Array
	9.6.9 Signaling a Job Array
	9.6.10 Sending Messages to Job Arrays
	9.6.11 Getting Log Data on Job Arrays
	9.6.12 Caveats for Using PBS Commands with Job Arrays
	9.6.12.1 Shells and PBS Commands with Job Arrays
	9.6.12.2 No xpbs Command for Job Arrays

	9.7 Job Array Caveats
	9.7.1 Job Arrays Required to be Rerunnable
	9.7.2 Resources Same for All Subjobs
	9.7.3 Checkpointing Not Supported for Job Arrays

	Working with PBS Jobs
	10.1 Current vs. Historical Jobs
	10.1.1 Definitions
	10.1.2 Job History Information
	10.1.2.1 Working With Moved Jobs
	10.1.2.2 PBS Commands and Finished Jobs

	10.2 Modifying Job Attributes
	10.2.1 Changing the Selection Directive
	10.2.2 Changing the Job-wide Limit

	10.3 Deleting Jobs
	10.3.1 Deleting Jobs with Force
	10.3.2 Deleting Finished Jobs
	10.3.3 Deleting Moved Jobs
	10.3.4 Restricting Number of Emails
	10.3.5 Deleting a Job Using xpbs

	10.4 Sending Messages to Jobs
	10.5 Sending Signals to Jobs
	10.5.1 Using xpbs to Signal a Job

	10.6 Changing Order of Jobs
	10.6.1 Restrictions

	10.7 Moving Jobs Between Queues

	Checking Job & System Status
	11.1 Viewing Job Status
	11.1.1 Specifying Jobs to View
	11.1.2 Viewing Basic Job Status
	11.1.3 Viewing Job Status in Alternate Format
	11.1.3.1 Display Size in Gigabytes
	11.1.3.2 Display Size in Megawords

	11.1.4 Viewing Job Status in Long Format
	11.1.5 Listing Jobs by User
	11.1.6 Listing Running Jobs
	11.1.7 Listing Non-Running Jobs
	11.1.8 Listing Hosts Assigned to Jobs
	11.1.9 Displaying Job Comments
	11.1.10 Showing State of Job, Job Array or Subjob
	11.1.11 Printing Job Array Percentage Completed
	11.1.12 Viewing Job Start Time
	11.1.13 Viewing Estimated Start Times For Jobs
	11.1.13.1 Why Does Estimated Start Time Change?

	11.1.14 Viewing Job Status in Wide Format
	11.1.15 Viewing Information for Finished and Moved Jobs
	11.1.15.1 Getting Information on Jobs Moved to Another Server
	11.1.15.2 Job History In Standard Format
	11.1.15.3 Job History In Alternate Format

	11.1.16 Caveats for Job Information

	11.2 Viewing Server Status
	11.2.1 Viewing Server Information in Default Format
	11.2.2 Viewing Server Information in Long Format

	11.3 Checking Queue Status
	11.3.1 Viewing Queue Information in Default Format
	11.3.2 Viewing Queue Information in Long Format
	11.3.3 Displaying Queue Limits in Alternate Format
	11.3.4 Caveats for the qstat Command

	11.4 Viewing Job & System Status with xpbs
	11.5 Selecting a List of Jobs
	11.5.1 Listing Job Identifiers of Finished and Moved Jobs
	11.5.2 Listing Jobs by Time Attributes
	11.5.3 Selecting Jobs Using xpbs

	11.6 Tracking Job Progress Using xpbs TrackJob Feature
	11.7 Checking License Availability

	Submitting Cray Jobs
	12.1 Introduction
	12.2 PBS Jobs on the Cray
	12.3 PBS Resources for the Cray
	12.3.1 Built-in and Custom Resources for the Cray
	12.3.1.1 Built-in Resources for All Platforms
	12.3.1.2 PBS Resources for the Cray

	12.3.2 Automatic Translation of mpp* Resource Requests
	12.3.2.1 Examples of Mapping mpp* Resources to select and place

	12.3.3 Resource Accounting

	12.4 Rules for Submitting Jobs on the Cray
	12.4.1 Always Specify Node Type
	12.4.2 Always Reserve Required Vnodes
	12.4.3 Requesting Login Node Where Job Script Runs
	12.4.4 Login Nodes in PBS Reservations
	12.4.5 Specifying Number of Chunks
	12.4.6 When Requesting Accelerators
	12.4.7 Requesting mppnppn Equivalent
	12.4.8 Do Not Mix mpp* and select/place
	12.4.9 Specify Host for Interactive Jobs

	12.5 Techniques for Submitting Cray Jobs
	12.5.1 Specifying Number of PEs per NUMA Node
	12.5.1.1 Caveats For aprun S

	12.5.2 Reserving N NUMA Nodes Per Compute Node
	12.5.3 Reserving Specific NUMA Nodes on Each Compute Node
	12.5.3.1 Requesting a Single NUMA Node Per Compute Node
	12.5.3.2 Requesting Multiple NUMA Nodes Per Compute Node
	12.5.3.3 Caveat When Using Combination or Number Resources

	12.5.4 Requesting Groups of Login Nodes
	12.5.5 Using Internal Login Nodes Only
	12.5.6 Using Compute Nodes
	12.5.7 Using Login and Compute Nodes
	12.5.8 Requesting Specific Groups of Nodes
	12.5.9 Requesting Nodes in Specific Order
	12.5.10 Requesting Interlagos Hardware
	12.5.11 Requesting Accelerators
	12.5.11.1 Examples of Requesting Accelerators

	12.6 Viewing Cray Job Information
	12.6.1 Finding Out Where Job Was Launched
	12.6.2 Finding Out How mpp* Request Was Translated
	12.6.3 Viewing Original mpp* Request
	12.6.4 Listing Jobs Running on Vnode
	12.6.4.1 Caveats When Listing Jobs
	12.6.4.2 Example Output

	12.6.5 How ALPS Request Is Constructed
	12.6.6 Viewing Accelerator Information

	12.7 Caveats and Advice
	12.7.1 Use select and place Instead of mpp*
	12.7.2 Using Combination or Number Resources
	12.7.3 Avoid Invalid Cray Requests
	12.7.4 Visibility of Jobs Launched from Login Nodes
	12.7.5 Resource Restrictions and Deprecations
	12.7.5.1 Restriction on Translation of mpp* Resources
	12.7.5.2 mpp* Resources Deprecated

	12.7.6 Do Not Mix mpp* and select/place
	12.7.7 Do Not Request PBScrayorder
	12.7.8 Do Not Request naccelerators
	12.7.9 Do Not Suspend Jobs
	12.7.10 Request Fewer Chunks

	12.8 Errors and Logging
	12.8.1 Invalid Cray Requests
	12.8.2 Job Requests More Than Available
	12.8.3 All Requested mppnodes Not Found
	12.8.4 Some Requested mppnodes Not Found
	12.8.5 Bad mppnodes Range
	12.8.6 Resource Request Containing Both mpp* and select/place

	Using Provisioning
	13.1 Definitions
	13.2 How Provisioning Works
	13.2.1 Causing Vnodes To Be Provisioned
	13.2.2 Using an AOE
	13.2.3 Job Substates and Provisioning

	13.3 Requirements and Restrictions
	13.3.1 Host Restrictions
	13.3.1.1 Single-vnode Hosts Only
	13.3.1.2 Server Host Cannot Be Provisioned

	13.3.2 AOE Restrictions
	13.3.2.1 Vnode Job Restrictions
	13.3.2.2 Provisioning Job Restrictions
	13.3.2.3 Vnode Reservation Restrictions

	13.3.3 Requirements for Jobs
	13.3.3.1 If AOE is Requested, All Chunks Must Request Same AOE

	13.4 Using Provisioning
	13.4.1 Requesting Provisioning
	13.4.2 Commands and Provisioning
	13.4.3 How Provisioning Affects Jobs

	13.5 Caveats and Errors
	13.5.1 Requested Job AOE and Reservation AOE Should Match
	13.5.2 Allow Enough Time in Reservations
	13.5.3 Requesting Multiple AOEs For a Job or Reservation
	13.5.4 Held and Requeued Jobs
	13.5.5 Conflicting Resource Requests
	13.5.6 Job Submission and Alteration Have Same Requirements

	HPC Basic Profile Jobs
	14.1 Definitions
	14.2 How HPC Basic Profile Jobs Work
	14.2.1 Introduction
	14.2.2 Assigning Nodes and Resources to Jobs

	14.3 Environmental Requirements for HPCBP
	14.3.1 User Account at HPCBP Server
	14.3.2 HPCBP Submission Client Architecture
	14.3.3 Password Requirement For Job Submission
	14.3.4 Location of Executable

	14.4 Submitting HPC Basic Profile Jobs
	14.4.1 Restrictions on Submitting Jobs for Execution at HPCBP Server
	14.4.1.1 Specifying Executable for Job
	14.4.1.2 HPCBP Jobs Run on One HPCBP Server
	14.4.1.3 Number of CPUs and mpiprocs
	14.4.1.4 Number of ompthreads
	14.4.1.5 Restrictions on Requesting arch Resource

	14.4.2 Using the qsub Command for HPCBP Jobs
	14.4.2.1 qsub Syntax for HPCBP Jobs
	14.4.2.2 qsub Options for HPCBP Jobs

	14.4.3 Requesting Resources
	14.4.4 Specifying Job Destination

	14.5 Managing HPCBP Jobs
	14.5.1 Monitoring HPCBP Jobs
	14.5.1.1 Job Status Reporting
	14.5.1.2 Deleting jobs running at HPC Basic Profile Server

	14.6 Errors, Logging and Troubleshooting
	14.6.1 Job Submission Password Problems
	14.6.2 Job Format Problems
	14.6.3 Password-related Job Deletion Issues
	14.6.4 Error Log Messages at Job Submission, Querying, and Deletion
	14.6.5 Job State Transition Log Messages

	14.7 Advice and Caveats
	14.7.1 Differences Between PBS and HPCBP
	14.7.2 PBS Features Not Supported With HPCBP
	14.7.2.1 Unsupported Commands

	14.8 See Also
	14.8.1 References

	Special Circumstances and Tools
	15.1 Support for Large Page Mode on AIX
	15.2 Using Comprehensive System Accounting

	Using the xpbs GUI
	16.1 Using the xpbs command
	16.1.1 Starting xpbs
	16.1.2 Running xpbs Under UNIX

	16.2 Using xpbs: Definitions of Terms
	16.3 Introducing the xpbs Main Display
	16.3.1 xpbs Menu Bar
	16.3.2 xpbs Hosts Panel
	16.3.3 xpbs Queues Panel
	16.3.4 xpbs Jobs Panel
	16.3.5 xpbs Info Panel
	16.3.6 xpbs Keyboard Tips

	16.4 Setting xpbs Preferences
	16.5 Relationship Between PBS and xpbs
	16.6 How to Submit a Job Using xpbs
	16.7 Exiting xpbs
	16.8 The xpbs Configuration File
	16.9 xpbs Preferences

	Appendix B: License Agreement
	Index

