

Thermodynamic and regulatory principles of the Calvin-Benson-Bassham Cycle

Oliver Ebenhöh

ISGSB Jena, 6.10.2016

The RuBisCO centered view

Changing the perspective

http://metamap.blogspot.de/2013/01/blog-post.html

Calvin cycle energetics

TABLE IV

FREE ENERGY CHANGES OF THE PENTOSE PHOSPHATE CYCLES IN C. pyrenoidosa

Reaction		$\Delta G'$ (kcal)	ΔG^{s} (kcal)
Reductiv	e cycle		
(A) (B) 1	$CO_2 + Ribul-1, 5-P_2^{4-} + H_2O \rightarrow 2 \ 3-P-glycerate^{3-} + 2 \ H^+$ $H^+ + 3-P-glycerate^{3-} + ATP^{4-} + NADPH$	-8.4	-9.8 R
	$\rightarrow ADP^{3-} + glyceraldehyde-3-P^{2-} + NADP^{+} + P_1^{2-}$	+4.3	- I.6
(C) (Glyceraldehyde-3- $P^{2-} \rightarrow dihydroxyacetone-P^{2-}$	- I.8	-0.2
(D) (Glyceraldehyde-3- P^{2-} + dihydroxyacetone- $P^{2-} \rightarrow$ Fru-1,6- P_2^{4-}	-5.2	-0.4
(E) I	$Fru_{1,6} - P_2^{4-} + H_2O \rightarrow Fru_{6} - P^{2-} + P_1^{2-}$	-3.4	-6.5 R
(F) I	$Fru-6-P^{2-} + glyceraldehyde-3-P^{2-} \rightarrow Ery-4-P^{2-} + Xyl-5-P^{2-}$	+1.5	-0.9
(G) I	$Ery-4-P^{2-} + dihydroxyacetone-P^{2-} \rightarrow Sed-1,7-P_{2}^{4-}$	-5.6	-0.2
(H) S	Sed-1,7- P_2^{4-} + H ₂ O \rightarrow Sed-7- P^{2-} + P ₁ ²⁻	-3.4	-7.1 R
(I) S	$ed_{7}P^{2-} + glyceraldehyde_{3}P^{2-} \rightarrow Rib_{5}P^{2-} + Xyl_{5}P^{2-}$	+0.1	-1.4
(J) I	$\text{Rib-5-}P^{2-} \rightarrow \text{Ribul-5-}P^{2-}$	+0.5	0.1
(K) X	$yl-5-P^{2-} \rightarrow Ribul-5-P^{2-}$	+0.2	-0.I
(L) I	Ribul-5- P^{2-} + ATP ⁴⁻ \rightarrow Ribul-1,5- P_{9}^{4-} + ADP ³⁻ + H ⁺	-5.2	-3.8 R'
(M) H	$Fru-6-P^{2-} \rightarrow Glc-6-P^{2-}$	-0.5	-0.3
(N) C	$Glc-6-P^{2-} + H_2O \rightarrow \alpha$ -D- $Glc + P_i^{2-}$	- 3.3	$(-7.2)^{*}$

(Bassham and Krause, BBA 1969)

Only a few reactions have a high energy gradient!

Conclusion by Bassham and Krause: this is where regulation must take place!

1)Near equilibrium reactions mix sugar phosphates, providing a range of substrates

- 1)Near equilibrium reactions mix sugar phosphates, providing a range of substrates
- 2)De-phosphorylation as thermodynamic driving force (ΔG<0)

- 1)Near equilibrium reactions mix sugar phosphates, providing a range of substrates
- 2)De-phosphorylation as thermodynamic driving force (ΔG<0)
- 3)Activation, carbon fixation, reduction (overall ΔG<0)

- 1)Near equilibrium reactions mix sugar phosphates, providing a range of substrates
- 2)De-phosphorylation as thermodynamic driving force (ΔG<0)
- 3)Activation, carbon fixation, reduction (overall ΔG<0)
- 4)Output

The pentose phosphate pathways uses the same equilibrium module

How to calculate the rapid equilibrium?

How to calculate the rapid equilibrium?

Solution 1: Brute force

see Pettersson 1988:

 $[BPGA][ADP] = q_2 [PGA][ATP]$ (20)

 $[GAP][NADP^+][P_i] = q_3 [BPGA][NADPH][H^+] (21)$

 $[DHAP] = q_4 [GAP]$

$$[FBP] = q_5 [GAP][DHAP]$$

(22)

(23)

(24)

(25)

(26)

(27)

(28)

 $[X5P][E4P] = q_7 [GAP][F6P]$

 $[SBP] = q_8 [DHAP][E4P]$

 $[X5P][R5P] = q_{10} [GAP][S7P]$

$$[Ru5P] = q_{11} [R5P]$$

 $[Ru5P] = q_{12} [X5P].$

Coefficients Aii in Eqn (59) are given by $A_{11} = 1$ $A_{j1} = 0; j = 2, \dots, 5 A_{12} = A_{13} = 0$ $A_{14} = -2t_{11}$ $A_{13} = 2t_{13}$ $A_{22} = t_1(1 + 2q_8s_2)s_3$ $A_{24} = 2(t_3s_3 + t_4) + t_5 + \frac{t_2s_4}{s_2} + \frac{t_7t_8}{t_6} - t_{10}t_{11}$ $A_{25} = (c_{ad} - s_5) \left(\frac{t_{10}s_2}{t_6 + t_9s_2} - \frac{t_7}{t_6} \right)$ $A_{32} = t_1(1 + q_8 s_2)s_2 + t_{12}$ $A_{34} = t_3 s_2 - t_1 (1 + 2q_8 s_2) s_2 t_{11} - t_{12} (1 + t_{11})$ $A_{35} = t_{13} \left[t_{12} + t_1 (1 + 2q_8 s_2) s_2 \right]$ $A_{42} = -\frac{t_1(1+q_8s_2)s_2s_3}{s_2s_3}$ 11985253 $A_{54} = \frac{c_{ad}t_7s_2(t_{11} - 1)}{c_{ad}t_7s_2(t_{11} - 1)}$ $-t_{11}$ $c_{ad} l_7 s_2 (1 - l_{13})$ 1655 $t_6 = \frac{q_2 q_3 q_4 s_5 [\text{NADPH}][\text{H}^+]}{1}$ [NADP⁺] $t_7 = t_{16}[c_p - 2s_1 - s_5 - (t_4 + t_5)s_2 - t_{12}s_3]$ $-(t_2 + t_{14})s_4 - t_1(1 + 2q_8s_2)s_2s_3$ $t_8 = c_{ad} + (q_2 - 1)s_5$ $t_9 = c_{ad} + (2q_2 - 1)s_5$ $\frac{l_7 l_9}{l_6} - \frac{l_2 s_4}{s_2}$ $t_{10} = 2t_4 + t_5 + t_1(1 + 4q_8s_2)s_3 +$ $t_{12} = 1 + q_{14} + q_{14}q_{15}$ $\frac{q_{11}}{t_1(1+2q_8s_2)s_2s_3} - 2t_2 - t_{14}$

How to calculate the rapid equilibrium?

Solution 2: Brain and Thermodynamics (see Supplementary to Kartal et al, 2011, MSB 7:542)

- Step 1: find conserved quantities
- Step 2: minimise Gibbs free energy

How to calculate the rapid equilibrium?

How to calculate the rapid equilibrium?

Solution 2: Brain and Thermodynamics (see Supplementary to Kartal et al, 2011, MSB 7:542)

Step 2: minimise Gibbs free energy
 How to find the function

 $f:(P_1, P_2, Q) \rightarrow (GAP, DHAP, E4P, XSP, RSP, RuSP, F6P, S7P, FBP, SBP)$? THERMODYNAMIC APPROACH:

G =
$$\sum_{j \in M} x_j \mu_j + RT \cdot \sum_{j \in M} x_j \cdot (\ln x_j - 1)$$

Gibbs energies of $T \cdot mixing entropy$
formation
Minimise G under constraints $C \cdot N = O$
-> LAGRANGIAN MULTIPLIERS

Solving the equilibrium module

3 equations with 3 unknowns:

GAP Lagrange multiplier E4P $P_{1} = x_{0}(f_{0} + \kappa_{2}f_{2}Z + \kappa_{4}f_{4}z^{2}) + 2gx_{0}^{2} + g_{1}x_{0}x_{1}$ $P_{2} = x_{1}(1 + \kappa_{3}z) + g_{1}x_{0}x_{1}$

Notation:

 x_k : compound with k+3 carbons

Solving the equilibrium module

3 equations with 3 unknowns:

GAP Lagrange multiplier E4P

$$P_{1} = x_{0}(f_{0} + \kappa_{2}f_{2}Z + \kappa_{4}f_{4}z^{2}) + 2gx_{0}^{2} + g_{1}x_{0}x_{1}$$

$$P_{2} = x_{1}(1 + \kappa_{3}z) + g_{1}x_{0}x_{1}$$

$$Q = x_{0}(2f_{2}\kappa_{2}z + 4f_{4}\kappa_{4}z^{2}) + x_{1}(1 + 3\kappa_{3}z) + g_{1}x_{0}x_{1}$$

Notation:

10¹

10⁻⁶

10-1

 x_k : compound with k+3 carbons

$$P_1 P_2$$

$$Q = C - 3 P$$

equilibrium concentrations in dependence of Q

 10^{0}

Q (relative units)

Necessary condition: $P_2 < Q < 4P_1 + 3P_2$

What happens at the extremes?

 $Q \rightarrow P_2$: accumulation of small sugars $Q \rightarrow 4P_1+3P_2$: accumulation of large sugars

 $Q = P_2$

DHAP

E4P

R5P

F6P

S7P

FBP SBP

 $Q = 4P_1 + 3P_2$

A 3-variable model of the CBB cycle

Second attempt: Michaelis-Menten

 $v_{1} = V_{\max 1} [FBP] / (K_{M1} + [FBP])$ $v_{2} = V_{\max 2} [SBP] / (K_{M2} + [SBP])$ $v_{3} = V_{\max 3} [Ru5P] / (K_{M3} + [Ru5P])$ $v_{4} = V_{\max 4} [GAP] / (K_{M4} + [GAP])$ $v_{5} = V_{\max 5} [F6P] / (K_{M5} + [F6P])$

Finding 'good'
$$V_{\text{max}} / K_{M} - \text{values...}$$

$$\dot{X} = N \cdot v \left(Y(X) \right)$$
Jacobian
$$J_{ik} = \sum_{j} n_{ij} \frac{\partial v_{j}}{\partial X_{k}} \text{ or } J = N \cdot E$$

$$c_{jk} = \frac{\partial v_{j}}{\partial X_{k}} \cdot \frac{\partial v_{e}}{\partial X_{k}} \text{ or } J = N \cdot H \cdot H$$

$$r_{jk} = \frac{\partial v_{j}}{\partial X_{k}} \cdot \frac{\partial v_{e}}{\partial X_{k}} \text{ or } J = N \cdot H \cdot H$$

relasticities Eik

Optimising elasticities for stability

Optimising elasticities for stability

Optimising elasticities for stability

0.004

0.002

"Predicted" elasticities

Limitations of the 3-variable model

What happens if the rapid equilibrium is not exactly fulfilled?

· Model the fast reactions as mass-action

• Tune the time-scale separation with one parameter

Displacement from equilibrium

The lowest ΔG is just -0.5 kcal/mol!

Total Gibbs free energy above equilibrium

Losing control

The positive control of SBPase

The positive control of SBPase

positive feedback! Stability problem...

The photosynthetic Gibbs effect

Intuitive (naïve) assumption:

Label should appear symmetrically in position 3 and 4

The photosynthetic Gibbs effect

Intuitive (naïve) assumption:

Label should appear symmetrically in position 3 and 4

But (Gibbs & Kandler, 1957, PNAS): Label appears first in position 4!

TABLE 1

DISTRIBUTION OF C¹⁴ IN GLUCOSE

	LIGHT INTENSITY		GLUCOSE			$(M\mu C)$	мgC)		
PLANT	(FOOT-CANDLES)	TIME	SOURCE	1	2	3	4	5	6
Chlorella*	4,000	10 sec.	Starch	0.35	0.27	3.67	4.90	0.10	0.16
Chlorella [†]	4,000	60 sec.	Starch	1.16	1.15	5.16	7.00	0.42	0.46
Chlorella [‡]	700	45 min.	Starch	22.5	22 .8	25.4	26.4	22.5	23.3
Tobacco §	4,000	50 sec .	Starch	2.69	4.30	11.0	18.6	1.17	· 2 . 99
Tobacco §	100	180 sec.	Starch	8.55	10.7	25.9	37.5	9.12	8.21
Sunflower	70	15 min.	Sucrose	0.55	0.60	1.20	2.29	0.48	0.54
Canna	2,000	24 hrs.	Sucrose	5.36	5.16	5.19	5.08	5.08	5.12

Simple explanation for 3 and 4

What about the other positions?

Bassham 1964:

"...because of the reversibility of transketolase..."

	-TRAC	CER CONT	ENT OF GL	UCOSE CA	RBON ATOMS			
GLUCOSE	$(M_{\mu}C/MgC)$							
SOURCE	1	2	3	4	5	6		
Starch	0.35	0.27	3.67	4.90	0.10	0.16		
Starch	1.16	1.15	5.16	7.00	0.42	0.46		
Starch	22.5	22.8	25.4	26.4	22.5	23.3		
Starch	2.69	4.30	11.0	18.6	1.17	2.99		
Starch	8.55	10.7	25.9	37.5	9.12	8.21		
n	0	0 00	1 00	0 00	0 40	0 54		

A dynamic model of isotope label distribution

<u>Workflow</u>

- stable Michaelis-Menten model, as developed above
- parameters to fit some measured steady-state
- multiply each metabolite by all possible isotope patterns (2^{#C}): total 512 metabolites
- multiply each reaction by all possible isotope patterns of substrates: total 13368 rate expressions

A dynamic model of isotope label distribution

<u>Workflow</u>

- stable Michaelis-Menten model, as developed above
- parameters to fit some measured steady-state
- multiply each metabolite by all possible isotope patterns (2^{#C}): total 512 metabolites
- multiply each reaction by all possible isotope patterns of substrates: total 13368 rate expressions

Slow TPI pronounces asymmetry

TK activity influences other labels

Conclusions

A minimal model of the Calvin-Benson-Bassham Cycle. Why bother?

- Modelling is simplification!
 - "Simplicity is the ultimate sophistication" (Leonardo da Vinci)
 - Simple designs allow for general conclusions and deeper understanding
- A (stable) minimal model serves as an easy-to-use module
 - more complex metabolic models
 - link with photosynthetic electron transport chain models
- Forms the basis for exploring dynamic isotope labelling
 - The Gibbs effect can be easily explained
 - It is an emergent property of the CBB cycle
 - We can understand which processes influence label dynamics

Thank you

Financial Support

Internet: http://qtb.hhu.de Public wiki: http://wiki.hhu.de/ Software & Models: http://github.com/QTB-HHU

@qtbduesseldorf