

Creating model-driven algal cultures in autonomously experimenting appliances Simon Schliesky¹, Philipp Norf¹, Rainer Machné², Oliver Ebenhöh¹

¹ Institute of Quantitative and Theoretical Biology, Heinrich Heine University, Düsseldorf, Germany ² Institute of Synthetic Microbiology, Heinrich Heine University, Düsseldorf, Germany

Motivation

Off-the-shelf photobioreactors are suitable for answering a defined set of research questions. Thus, finding a solution that is easily adaptdable to a broad range of experiments was not possible.

Designing a customisable, modular photobioreactor appliance includes mandatory development of control software. Therefore, we evaluate the possibilities of ex-

periment automation.

Example workflow

Maintenance Provides all functions that are independent of actual sensory output, e.g. cleaning routines

→ Store results

Data-driven models:

- simulate parameter shifts
- simulate knockout effects
- find bottlenecks
- understand mechanistics

complementing

Model-driven cultures:

- systematic parameter testing
- bottom-up approaches (mutagenesis, constraint driven evolution)
- idempotent state of cultures
- inverse methods to automatically build models through machine learning

Imprint: simon.schliesky@hhu.de www.qtb.hhu.de

© Simon Schliesky 2016 This work is licensed under CC-BY-NC 3.0 Full license text can be found under http://creativecommons.org/licenses/by-nc/3.0

Run experiment

YAS / ENCAPP April 23rd - 29th 2016, Malta