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Example from physics:

www.thehungryandfoolish.com www.hh.schule.de www.welt.de
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???
F=m⋅a

Every model is a small step on this path

Intuition

EXPERIMENT

THEORY

●  Initial model formulation
●  Confirmation / falsification 

of predictions
●  New model assumptions

●  Model predictions / 
new hypotheses

●  Suggestions for new 
experiments

●  Improvement of  
experimental design

The Systems biology principle

Understanding

How does one find principles 
(theory building)?



  

What's special about plants?

1.Photosynthesis

2.Can't run away!

Experts in chemical warfare!

Estimated > 200,000 secondary metabolites!
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Starch degradation

Carbon
partitioning

Resource allocation in plants

Main challenge: 
Light is only available during the day

Consequence:
Reserves need to be stored for the night



  

The diurnal turnover of starch
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What measures the 
starch content?

How is the correct 
breakdown rate 
'calculated'?

How is carbon partitioning controlled?

Open questions

How does the clock 'tell' 
expected length of day/night?



  

Why starch?

The structure of starch allows for an extremely high energy storage density

Density: 1.54 g/ml



  

Alternatives

Carbohydrates

Lipids

Proteins

Alcohol

energy content (kJ/g)

17

38

17

30

We (animals and fungi) 
predominantly use glycogen

big molecule (up to 10 MDa)

still small compared to starch

40μm
3⋅1010 Da!!!

Possible advantages of starch

● low osmolarity
● large size
● high density



  

Alternatives

Carbohydrates

Lipids

Proteins

Alcohol

energy content (kJ/g)

17

38

17

30

We (animals and fungi) 
predominantly use glycogen

big molecule (up to 10 MDa)

still small compared to starch

3⋅1010 Da!!!

Possible advantages of starch

● low osmolarity
● large size
● high density

trade-off between storage density 
and rapid mobilization

optimised for storage density, 
slower deployment

40μm



  

How is starch made?

from: Geigenberger 2011
(Plant Phys)



  

How is starch made?

from: Geigenberger 2011
(Plant Phys)

What's behind these?



  

Many enzymes are involved in starch synthesis

from: Radchuk et al 2009 (Plant Phys)● starch synthases
● branching enzymes
● phosphorylases
● isoamylases



  from: Zeeman et al, 2007, Biochem J

...and starch breakdown



  from: Zeeman et al, 2007, Biochem J

...and starch breakdown

Many enzymes

● are surface-active

● act on polymers

or

hard to describe with 
traditional modelling 
approaches



  

Challenges / Topics of lecture

1. Surface-active enzymes

2. Polymer-active enzymes

3. Timing of starch metabolism



  

1. Surface-active enzymes



  

Rate laws for surfactive enzymes

v=
V max S

K MS
v=f ?
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Rate laws for surfactive enzymes

v=
V max S

K MS
v=f ?

Reaction space confined to 2D!

Implications! - Fundamental differences to the classical case in solution:

●  Relative activity dependent on enzyme concentration (jamming)
●  Rate not independent on presence of other enzyme species! (competition)



  

Derivation of a generic surfactive rate-law

Kartal and Ebenhöh (2013) FEBS Letters – centenary issue commemorating Michaelis-Menten 'Kinetik der Invertinwirkung'



  

The adsorption equilibrium

The Langmuir isotherm 
(a concept from surface physics)

θE =
n(E)

n (E)max

=
n(E )

Emax⋅S

Adsorption coverage (surface concentration):

Adsorption rate:

Desorption rate:

r a ∝ c(E )⋅(1−θE)

rd ∝ θE



  

The adsorption equilibrium

The Langmuir isotherm 
(a concept from surface physics)

θE =
n(E)

n (E)max

=
n(E )

Emax⋅S

Adsorption coverage (surface concentration):

Adsorption rate:

Desorption rate:

r a ∝ c(E )⋅(1−θE)

rd ∝ θE
Available area function



  

The adsorption equilibrium

Other adsorption models can give quite different results:

LNG

RSA



  

Derivation of a generic surfactive rate-law

Kartal and Ebenhöh (2013) FEBS Letters – centenary issue commemorating Michaelis-Menten 'Kinetik der Invertinwirkung'



  

Derivation of a generic surfactive rate-law

available area functionspecific surface area

“few big objects behave different 
to many small objects”

“many enzymes (also others) 
jam the surface”

Kartal and Ebenhöh (2013) FEBS Letters – centenary issue commemorating Michaelis-Menten 'Kinetik der Invertinwirkung'



  

Consequences for experimental design

mass alone is insufficient!



  

A kinetic model of starch surface attack

●  Disruption of crystalline surface by phosphorylation allows access for BAM and ISA

●  Dephosphorylation by DSP enables further degradation



  

Simulations compared to experiment

Good agreement with data from Kötting et al (2009) Plant Cell

But: only one time point!



  

2. Polymer Biochemistry



  

Why starch?

The structure of starch allows for an extremely high energy storage density

Density: 1.54 g/ml



  

Starch degradation - disproportionation

  ?

CHLOROPLAST

malto-oligos

maltose
transporter

β-amylase

glucose
transporter

maltotriose

maltose DPE1 
(D-enzyme)

starch granule



  

DPE1

(Takaha et al., JBC 1993)

G3 G4 G5

Disproportionating enzymes (D-enzymes)

EC: 2.4.1.25

catalyses 2 maltotriose maltopentaoseglucose

DPE1 produces a 
set of glucans of 
different length in 
in vitro assays.

but not only!

G3G3 G5G1



  

DPE1

(Takaha et al., JBC 1993)

G3 G4 G5

Disproportionating enzymes (D-enzymes)

EC: 2.4.1.25

catalyses 2 maltotriose maltopentaoseglucose

DPE1 produces a 
set of glucans of 
different length in 
in vitro assays.

but not only!

G3G3 G5G1

Equilibrium 
distribution 
depends on 
initial 
conditions!

K
eq

???



  

DPE1

Disproportionating enzymes (D-enzymes)

EC: 2.4.1.25

transfers glucosyl residues from one glucan to another: GnGm Gn−qGmq

reaction must proceed towards a smaller Gibbs free energy : G= H−T  S0

Disproportionating Enzyme 
randomises DPs

energy neutral (enthalpy of α-1,4-bond hydrolysis independent on position):
(Goldberg et al, 1992)

 H=0

DPE1 maximises the entropy of the polydisperse reactant mixture



  

The thermodynamic picture
●  Different DPs are interpreted as different energy states (energy of formation)

●  Enzymes mediate transitions between these states



  

Polydisperse mixtures as statistical ensembles

xi : molar fraction of glucans with length i 
  corresponds to occupation number of state i

S=−∑ xk ln x k

The distribution        fully characterises the polydisperse reactant mixture{x i }

The entropy of the statistical ensemble is

Maximum entropy principle
under constraint that #bonds 
and #molecules is conserved!

S=−∑ xk ln xk max!

conservation of #molecules:

conservation of #bonds:

∑ x k=1

∑ k⋅x k=b
determined by 
initially applied 
mixture of 
maltodextrins

Equilibrium is determined by maximal entropy:



  

Entropic approach

Solution using Lagrangian multipliers: Necessary conditions are given by

∂ L
∂ xk

=0 with L xk ; ,=∑
k

x k ln xk  ∑k x k−1  ∑k k⋅xk−b 
⇔ ln x k1k =0 for all k
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⇔ ln x k1k =0 for all k

xk=
1
Z
e−k  with Z=∑

k

e−k 

Analogy to statistical physics! There, =
1

kB⋅T 

Calculation of  −
1
Z

∂Z
∂

= b ⇔  = ln
b1
b

∂ L
∂ xk

=0 with L xk ; ,=∑
k

x k ln xk  ∑k x k−1  ∑k k⋅xk−b 



  

Entropic approach

Solution using Lagrangian multipliers: Necessary conditions are given by

⇔ ln x k1k =0 for all k

xk=
1
Z
e−k  with Z=∑

k

e−k 

Analogy to statistical physics! There, =
1

kB⋅T 

Calculation of  −
1
Z

∂Z
∂

= b ⇔  = ln
b1
b

Maximal entropy in equilibrium: Smax = b1 lnb1−b ln b

∂ L
∂ xk

=0 with L xk ; ,=∑
k

x k ln xk  ∑k x k−1  ∑k k⋅xk−b 



  

Entropic approach

S=−∑ x k ln x k max!

conservation of #molecules:

conservation of #bonds:

∑ x k=1

∑ k⋅x k=DPini−1

predicts

An instance of the 
2nd law of TD!

xi=
1
Z
e−β E i , β=ln

DPini

DPini−1

implies



  

DPE1 is entropy driven

method: capillary electrophoresis

β is a generalisation of the equilibrium constant for polydisperse mixtures

Experiments with Martin Steup, University of Potsdam

(Kartal et al, 2011, Mol Syst Biol)



  

The dynamics of DPE1

maltose is 
formed late

Two time scales!



  

The dynamics of DPE1

Two time scales!

maltose is 
formed late

subsite +1 repellent
(binding of G2 unlikely)

The simulations used 3 parameters:

1

2

3

●  maximal turnover
●  affinity for positional isomer 1
●  affinities for positional isomers 2 and 3

ratio 1:800



  

This system allows to follow 
the entropy experimentally!

“true” equilibrium

“quasi” equilibrium

(calculated as previously)

(calculated with the same 
approach but omitting 
maltose from the statistical 
ensemble)



  

This system allows to follow 
the entropy experimentally!

“true” equilibrium

“quasi” equilibrium

(calculated as previously)

(calculated with the same 
approach but omitting 
maltose from the statistical 
ensemble)

We understand equilibrium 
(maximum entropy)
But which principle guides 
the evolution of the out-of-
equilibrium states?



  

Theory is also confirmed by DPE2

DPE2 vs DPE1
● transfers single glucosyl residues
● G2 only used as donor
● G3 only used as acceptor

S=−∑
k

x k ln x k max

with one additional side constraint
x1x2=m=const.

⇒ xi=
1
Z
e−E i for i3

Generic reaction catalysed:

Entropic principle:

and∑ x k=1 ;∑ k⋅xk=b 

whereβfulfils b−2(1−m)=m⋅
e−β

1+e−β +(1−m)⋅
e−β

1−e−β

Experiment

Theory

GnG1 Gn−1G2



  

Theory is also confirmed by DPE2

DPE2 vs DPE1
● transfers single glucosyl residues
● G2 only used as donor
● G3 only used as acceptor

S=−∑
k

x k ln x k max

with one additional side constraint
x1x2=m=const.

⇒ xi=
1
Z
e−E i for i3

Generic reaction catalysed:

GnG1 Gn−1G2

Entropic principle:

and∑ x k=1 ;∑ k⋅xk=b 

where  fulfils b−21−m=m⋅
e−

1e−
1−m⋅

e−

1−e−

Experiment

Theory

transition to equilibrium 
takes very long!



  

Generalisation to non-zero enthalpy changes 
Phosphorylase (cPho):

P iGn G1PGn−1

phosphoester bond H≠0 !

G = Gf−T⋅Smix min!

Gibbs energy of formation

mixing entropy:
Smix=−R∑ xk ln xk

Prediction: Similar pattern as for DPE2

Experimentally confirmed.

1,4-α-glucosidic linkage

Generalisation by including energetic 
and entropic contributions:

(Kartal et al, Supp to MSB 2011; Ebenhöh et al, Proc 5th ESCEC 2013)



  cellular metabolism
sucrose

An entropy-driven buffer

Two entropic enzymes, 
cPho and DPE2, integrate 
input from may chloroplasts



  

CHLOROPLAST

G2

SHG

P

G1 G1P

G6P

sucrose synthesis glycolysis

ATP ADP

What is the role of the SHG pool?

DPE2 Pho

Two 'entropic' enzymes mediate the 
turnover of a polydisperse pool

What is the advantage over other 
hypothetical systems?



  

CHLOROPLAST

G2

SHG

P

G1 G1P

G6P

sucrose synthesis glycolysis

ATP ADP

What is the role of the SHG pool?

DPE2 Pho

G2 P

G1 G1P

MPho

Comparison with alternative

No buffer



  

Polydisperse SHG pools increases robustness in vivo

1. Attenuation of fluctuation 
amplitude (low-pass filter)

2. Transient support of activity 
after drop of maltose influx

3. Buffering large variations in 
influx to provide robust output 
activity



  

Replacing DPE2 by MalQ

CHLOROPLAST

G2

SHG

P

G1 G1P

G6P

sucrose synthesis glycolysis

ATP ADP

DPE2 Pho

MalQ does the same as DPE2, but does not use SHG

GnG1 Gn−1G2

G2

G
n

P

G1 G1P

MalQ Pho



  

Simulating MalQ in vitro kinetics

Gn+G1 Gn−1+G2 n≠3

In vitro system: DPE1 + HXK

G1 ∅

Incubation with G
2
 only!

delayed start presumably 
due to enzyme-bound 
glucose residues



  

complemented plants grow OK!

(Julia Smirnova, PhD thesis; Ruzanski et al, JBC 2013)

Moderate growth phenotype



  

Maltose turnover

wt



  

Where else do find entropic enzymes?

...for example

Maltosyltransferases in Streptomyces

“Acceptor specificity” 
can be explained by 
entropic principles

Syson et al, 2011,
J Biol Chem



  

3. Timing of Metabolism



  

?
?
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What measures the 
starch content?

How is the correct 
breakdown rate 
'calculated'?

How is carbon partitioning controlled?

Open questions

How does the clock 'tell' 
expected length of day/night?



  

...even more mysteries...

The 'early dusk' experiment by 
Alexander Graf, 
(Graf et al 2010, PNAS)

Even when 'surprised' by a 4 hour 
shorter day, plants 'know' what to do!

The circadian clock is apparently important, because:

Plants cannot adapt to T-cycles different than 24h!



  

Building a mathematical model

Known: ●  Metabolism

●  Circadian clock

Unknown: ●  Regulation of starch synthesis

●  Regulation of starch breakdown

●  How is starch content measured?

1. The model must combine known systems with plausible, but 
hypothesised regulatory mechanisms

2. To keep the model tractable, we need to find a compromise between 
detailedness and simplification

Challenges:

Seaton et al, 2013, Roy Soc Interface;
Pokhilko et al, 2014, Mol BioSyst; 
Pokhilko et al, 2015, Roy Soc Interface

Alexandra Pokhilko



  

S

T

Arithmetic division

v =
S
T

Simplest solution:

Auxiliary compound X (e.g. active form of starch degrading enzyme):

dX
dt

= k 1S−k 2 X T

Rapid activation/deactivation: dX
dt

=0 ⇔ X=
k1

k 2

⋅
S
T

How to regulate starch degradation?

Scaldione et al (2013), eLife: Arabidopsis plants perform arithmetic division to prevent starvation at night



  

The evolution of a model
In Seaton et al, 2013:

● Testing basic regulatory mechanisms
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The evolution of a model
In Seaton et al, 2013:

● Testing basic regulatory mechanisms
● Replacing 'clock' by a detailed model
● Simulate clock mutants
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The evolution of a model
In Seaton et al, 2013:

● Testing basic regulatory mechanisms
● Replacing 'clock' by a detailed model
● Simulate clock mutants

● Variants 2 & 3 ok, more tests needed
● Components A,X,Y remain hypothetical

Conclusions:

Pokhilko et al, 2011



  

Adding more details of metabolism

●  Carbon fixation
●  Starch synthesis
●  Starch breakdown
●  Sucrose synthesis
●  Sucrose export

Include key steps but simplify pathways!

Pokhilko et al, 2014, Mol Biosystems



  

Model assumptions (postulates)

1. Key sensors:

2. Global regulators:

Timer α dark sensor β

time-to-dawn carbon limitation

Activator D Inhibitor I



  

Regulatory principles



  

Simulations wild-type

Regulatory principles allow to 
explain wild-type starch turnover 

under various photoperiods



  

What are the unknown components?

Model allows to make predictions of their behaviour

Helps to identify candidates from expression / proteomics data

For example, the component β:

Predicted peak-levels at dawn Microarray data for β-subunit of SNRK1

Promotor structure also supports AKINβ1 as good candidate for β

Other regulatory components still unknown!



  

The third generation

A combined regulation of starch 
turnover by demand regulation, 
carbon sensing, light sensing 
and timing (clock)

The molecular nature of all key 
regulatory components are postulated 
based on experimental data 

Pokhilko et al, 2015, Roy Soc Interface



  

Improved results and new predictions

Comparison with experimental data

Making new predictions

Theory/Experiment



  

Outlook – towards designing starch



  

What do we need to model & design starch?

1. Understand and describe polymer-active enzymes
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DPE1 MalQ
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What do we need to model & design starch?

1. Understand and describe polymer-active enzymes

OK

Require more data: 
● in vitro kinetics of enzymes
● chain-length distributions for knockouts / synthetic in vitro-systems

2. Understand and describe surface-active enzymes

OK

Require more data: 
● in vitro kinetics of enzymes (difficult!)
● synthetic in-vitro systems with crystallised (ideal) starch
● time-resolved data!

3. Find the missing links!

For example:
● formation of double helices (α-1,4-glucans)
● cooperation of biochemical and biophysical processes



  

Modelling 3D structure of polysaccharides



  

The next steps...

● Systematic in vitro characterisation of surface-active and polymer-active enzymes
(Rob Field, JIC Norwich)

● Systematic experiments in yeast and combination of enzymes in vitro
(Sam Zeeman, ETH Zurich)

● Combine existing modelling approaches
(Oliver Ebenhöh, HHU Düsseldorf)

ERA-CAPS Project DesignStarch

● Envisaged start: June 2015
● Goals: 

● synthesise starch in vitro and in yeast
● model these processes
● predict physico-chemical properties from biochemistry/biophysics
● design starch!    

Postdoc needed!
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