

HEINRICH HEINE UNIVERSITÄT DÜSSELDORF

Entropy in Metabolism and the Emergence of Complex Structures

Oliver Ebenhöh

Institut für

Overview: Ongoing research

AccliPhot

Photosynthetic Acclimation

- Understand the regulation of photosynthesis
- Nonphotochemical quenching, state transitions

Designing Starch ERA-CAPS

(Ebenhöh et al, 2011; Ebenhöh et al, 2014; Matuszyńska et al, 2015)

8
 BioSC Algal Fertilizers

- Understand phosphate uptake and storage metabolism in plants and algae
- Use algae to extract P from wastewater and apply as fertilizer to soil

14 CEPLAS
Cluster of Excellence on Plant Sciences

Secondary metabolism

- Understand what controls the diversity of secondary metabolite structures
- Glucosinolates
- Fatty acids / designer oils

Starch - half the caloric uptake of humanity

Why starch?

Density: $1.54 \mathrm{~g} / \mathrm{ml}$

The structure of starch allows for an extremely high energy storage density

Alternatives

energy content (kJ/g)

Carbohydrates 17
Lipids 38
Proteins 17
Alcohol 30

Possible advantages of starch

- low osmolarity
- large size
- high density

We (animals and fungi) predominantly use glycogen

big molecule (up to 10 MDa)
still small compared to starch

Alternatives

energy content (kJ/g)

Carbohydrates	17
Lipids	38
Proteins	17
Alcohol	30

Possible advantages of starch

- low osmolarity
- large size
- high density

The structure of a starch granule

Amylose	Amylopectin
(MW 32,000-113,000)	(MW 107-10 $)$

Wouldn't it be great...

...if we could design starch with desired properties in vivo?

But how do all these factors actually play together?

Wouldn't it be great...

...if we could design starch with desired properties in vivo?

But how do all these factors actually play together?

A classical physics problem

collective behaviour

- pressure
- temperature

microscopic

(from: Radchuk et al, 2009)

DesignStarch

Rob Field, Michael Rugen (JIC Norwich)

Starch metabolism: ingredients

A unique molecule

Ordered part As a 2D tree

Double helices

Genealogy of the tree (mother-daugther connections)

Starch metabolism: ingredients

The main reactions

Elongation $\alpha-1,4 \longrightarrow \alpha-1,4(+1)$
Branching (cut \& re-branch) $\alpha-1,4 \longrightarrow \alpha-1,6$

Debranching $\alpha-1,6 \longrightarrow \emptyset$

Double helix formation

elongation

Starch metabolism bottom-up

Disproportionating enzymes (D-enzymes)

DPE1

EC: 2.4.1.25
but not only!

DPE1 produces a set of glucans of different length in in vitro assays.
(Takaha et al., JBC 1993)

Disproportionating enzymes (D-enzymes)

DPE1
EC: 2.4.1.25
but not only!

(Takaha et al., JBC 1993)

DPE1 produces a set of glucans of different length in in vitro assays.

Equilibrium distribution depends on initial conditions!

$$
K_{e q} ? ? ?
$$

Positional Isomers

Different binding modes of the donor substrate exists

1,2 or 3 glucose residues can be transferred
\square The general reaction equation is $G_{n}+G_{m} \longleftrightarrow G_{n-q}+G_{m+q}$ with $q=1,2,3$

Positional Isomers

Different binding modes of the donor substrate exists

1,2 or 3 glucose residues can be transferred
\square The general reaction equation is $G_{n}+G_{m} \longleftrightarrow G_{n-q}+G_{m+q}$ with $q=1,2,3$

For such a reaction, what is the meaning of $K_{M} ? ? ?$

Disproportionating enzymes (D-enzymes)

DPE1

EC: 2.4.1.25

Disproportionating Enzyme randomises DPs

A

$$
D P_{\text {ini }}=4 \quad D P=1 \ldots 7
$$

transfers glucosyl residues from one glucan to another: $G_{n}+G_{m} \longleftrightarrow G_{n-q}+G_{m+q}$ reaction must proceed towards a smaller Gibbs free energy : $\quad \Delta G=\Delta H-T \Delta S<0$ energy neutral (enthalpy of $\alpha-1,4$-bond hydrolysis independent on position): $\Delta H=0$ (Goldberg et al, 1992)

DPE1 maximises the entropy of the polydisperse reactant mixture

Polydisperse mixtures as statistical ensembles

X_{i} : molar fraction of glucans with length i corresponds to occupation number of state i

The distribution $\left\{x_{i}\right\}$ fully characterises the polydisperse reactant mixture
The entropy of the statistical ensemble is $S=-\sum x_{k} \ln x_{k}$

Equilibrium is determined by maximal entropy:

$$
S=-\sum x_{k} \ln x_{k} \rightarrow \max !
$$

Maximum entropy principle under constraint that \#bonds and \#molecules is conserved!
conservation of \#molecules:

$$
\begin{aligned}
& \sum x_{k}=1 \\
& \sum k \cdot x_{k}=b
\end{aligned}
$$

conservation of \#bonds: $\quad \sum k \cdot x_{k}=b$

Entropic approach

Solution using Lagrangian multipliers: Necessary conditions are given by

$$
\begin{aligned}
& \frac{\partial L}{\partial x_{k}}=0 \text { with } L\left(x_{k} ; \alpha, \beta\right)=\sum_{k} x_{k} \ln \left(x_{k}\right)+\alpha\left(\sum_{k} x_{k}-1\right)+\beta\left(\sum_{k} k \cdot x_{k}-b\right) \\
\Leftrightarrow & \ln \left(x_{k}\right)+1+\alpha+k \beta=0 \text { for all } k
\end{aligned}
$$

Entropic approach

Solution using Lagrangian multipliers: Necessary conditions are given by

$$
\begin{aligned}
& \frac{\partial L}{\partial x_{k}}=0 \text { with } L\left(x_{k} ; \alpha, \beta\right)=\sum_{k} x_{k} \ln \left(x_{k}\right)+\alpha\left|\sum_{k} x_{k}-1\right|+\beta\left|\sum_{k} k \cdot x_{k}-b\right| \\
& \Leftrightarrow \ln \left(x_{k}\right)+1+\alpha+k \beta=0 \text { for all } k
\end{aligned}
$$

$$
x_{k}=\frac{1}{Z} e^{-k \beta} \text { with } Z=\sum_{k} e^{-k \beta}
$$

Entropic approach

Solution using Lagrangian multipliers: Necessary conditions are given by

$$
\begin{aligned}
& \frac{\partial L}{\partial x_{k}}=0 \text { with } L\left(x_{k} ; \alpha, \beta\right)=\sum_{k} x_{k} \ln \left(x_{k}\right)+\alpha\left(\sum_{k} x_{k}-1\right)+\beta\left|\sum_{k} k \cdot x_{k}-b\right| \\
\Leftrightarrow & \ln \left(x_{k}\right)+1+\alpha+k \beta=0 \text { for all } k
\end{aligned}
$$

$$
x_{k}=\frac{1}{Z} e^{-k \beta} \text { with } Z=\sum_{k} e^{-k \beta}
$$

Analogy to statistical physics! \quad There, $\left.\beta=\frac{1}{k_{B} \cdot T} \right\rvert\,$

Entropic approach

Solution using Lagrangian multipliers: Necessary conditions are given by

$$
\begin{aligned}
& \frac{\partial L}{\partial x_{k}}=0 \text { with } L\left(x_{k} ; \alpha, \beta\right)=\sum_{k} x_{k} \ln \left(x_{k}\right)+\alpha\left(\sum_{k} x_{k}-1\right)+\beta\left|\sum_{k} k \cdot x_{k}-b\right| \\
& \Leftrightarrow \ln \left(x_{k}\right)+1+\alpha+k \beta=0 \text { for all } k
\end{aligned}
$$

$$
x_{k}=\frac{1}{Z} e^{-k \beta} \text { with } Z=\sum_{k} e^{-k \beta}
$$

Analogy to statistical physics! \quad There, $\left.\beta=\frac{1}{k_{B} T} \right\rvert\,$

Calculation of β : $\quad-\frac{1}{Z} \frac{\partial Z}{\partial \beta}=b \Leftrightarrow \beta=\ln \frac{b+1}{b}$

Entropic approach

Solution using Lagrangian multipliers: Necessary conditions are given by

$$
\begin{aligned}
& \frac{\partial L}{\partial x_{k}}=0 \text { with } L\left(x_{k} ; \alpha, \beta\right)=\sum_{k} x_{k} \ln \left(x_{k}\right)+\alpha\left(\sum_{k} x_{k}-1\right)+\beta\left|\sum_{k} k \cdot x_{k}-b\right| \\
& \Leftrightarrow \ln \left(x_{k}\right)+1+\alpha+k \beta=0 \text { for all } k
\end{aligned}
$$

$$
x_{k}=\frac{1}{Z} e^{-k \beta} \text { with } Z=\sum_{k} e^{-k \beta}
$$

Analogy to statistical physics! \quad There, $\left.\beta=\frac{1}{k_{B} \cdot T} \right\rvert\,$

Calculation of β : $\quad-\frac{1}{Z} \frac{\partial Z}{\partial \beta}=b \Leftrightarrow \beta=\ln \frac{b+1}{b}$

Maximal entropy in equilibrium: $S_{\text {max }}=(b+1) \ln (b+1)-b \ln b$

Entropic approach

$$
\begin{aligned}
& \qquad S=-\sum x_{k} \ln x_{k} \rightarrow \max ! \\
& \text { conservation of \#molecules: } \sum x_{k}=1 \\
& \text { conservation of \#bonds: } \sum k \cdot x_{k}=\mathrm{DP}_{\mathrm{ini}}-1
\end{aligned}
$$

implies

$$
x_{i}=\frac{1}{Z} e^{-\beta E_{i}}, \beta=\ln \frac{\mathrm{DP}_{\mathrm{ini}}}{\mathrm{DP}_{\mathrm{ini}}-1}
$$

predicts

An instance of the
$2^{\text {nd }}$ law of TD!

DPE1 is entropy driven

Experiments with Martin Steup, University of Potsdam

 method: capillary electrophoresis
β is a generalisation of the equilibrium constant for polydisperse mixtures
(Kartal et al, 2011, Mol Syst Biol)

The dynamics of DPE1

maltose is formed late

Two time scales!

The dynamics of DPE1

Two time scales!
(binding of G2 unlikely)
The simulations used 3 parameters:

- maximal turnover
- affinity for positional isomer 1
- affinities for positional isomers 2 and 3

A

B

This system allows to follow the entropy experimentally!
"true" equilibrium
(calculated as previously)
"quasi" equilibrium (calculated with the same approach but omitting maltose from the statistical ensemble)

A

B

This system allows to follow the entropy experimentally!
"true" equilibrium
(calculated as previously)
"quasi" equilibrium (calculated with the same approach but omitting maltose from the statistical ensemble)

Theory is also confirmed by DPE2

DPE2 vs DPE1

- transfers single glucosyl residues
- G2 only used as donor
- G3 only used as acceptor

Generic reaction catalysed:

$$
G_{n}+G_{1} \longleftrightarrow G_{n-1}+G_{2}
$$

$$
\Rightarrow \quad x_{i}=\frac{1}{Z} e^{-\beta E_{i}} \text { for } i \geqslant 3 \quad \text { where } \beta \text { fulfils } \quad b-2(1-m)=m \cdot \frac{e^{-\beta}}{1+e^{-\beta}}+(1-m) \cdot \frac{e^{-\beta}}{1-e^{-\beta}}
$$

Theory is also confirmed by DPE2

DPE2 vs DPE1

- transfers single glucosyl residues
- G2 only used as donor
- G3 only used as acceptor

Generic reaction catalysed:

$$
G_{n}+G_{1} \longleftrightarrow G_{n-1}+G_{2}
$$

Entropic principle:

$S=-\sum_{k} x_{k} \ln x_{k} \rightarrow$ max
with one additional side constraint

$$
x_{1}+x_{2}=m=\text { const. }\left(\text { and } \sum x_{k}=1 ; \sum k \cdot x_{k}=b\right)
$$

$$
\Rightarrow \quad x_{i}=\frac{1}{Z} e^{-\beta E_{i}} \text { for } i \geqslant 3 \quad \text { where } \beta \text { fulfils } \quad b-2(1-m)=m \cdot \frac{e^{-\beta}}{1+e^{-\beta}}+(1-m) \cdot \frac{e^{-\beta}}{1-e^{-\beta}}
$$

Generalisation to non-zero enthalpy changes

Phosphorylase (cPho):

$$
P_{i}+G_{n} \longleftrightarrow G 1 P+G_{n-1}
$$

Generalisation by including energetic and entropic contributions:

$$
G=G^{f}-T \cdot S_{m i x} \rightarrow \min !
$$

Gibbs energy of formation

$$
\begin{aligned}
& \text { mixing entropy: } \\
& S_{\text {mix }}=-R \sum x_{k} \ln x_{k}
\end{aligned}
$$

A

B

Prediction: Similar pattern as for DPE2
Experimentally confirmed.
(Kartal et al, Supp to MSB 2011; Ebenhöh et al, Proc $5^{\text {th }}$ ESCEC 2013)

An entropy-driven buffer

What is the role of the SHG pool?

CHLOROPLAST

What is the role of the SHG pool?

Comparison with two alternatives

CHLOROPLAST

Polydisperse SHG pools increases robustness in vivo

Challenge: explain observations with bottom-up approach

Goal: reproduce emergent macroscopic properties with microscopic model

Top-down:
 expressing starch-like polymers in yeast ERA-CAPS

STARCH IN YEAST?

Barbara Pfister

- Delete all 7 glycogen biosynthesis genes
- Progressively add Arabidopsis genes
- All lines express AGPase and both BE isoforms
- Variable combinations of starch synthases with the presence/absence of ISA

lodine-stained galactose plate

Conclusion \& Outlook:

- We are only beginning to understand...
- We get something that looks like starch, but is not!
- How does this actually work?
- How can we control the properties of the insoluble glucans?

Where else do find entropic enzymes?

...for example

Maltosyltransferases in Streptomyces
"Acceptor specificity" can be explained by entropic principles

A

Where else do find entropic enzymes?

...or even in central metabolism?

Transketolase? $K_{n}+A_{m} \Leftrightarrow A_{n-2}+K_{m+2}$
Why only $n=5,6,7$ und $m=3,4,5$? Why should there be no octuloses / nonuloses...?
 ,

irreversible enzyme
http://metamap.blogspot.de/2013/01/blog-post.html

Octulose-8P oscillates in respiratory cycle in yeast

O8P oscillations in phase with other PPP intermediates

Calvin cycle energetics

TABLE IV
free energy changes of the pentose phosphate cycles in C. pyrenoidosa

$\overline{\text { Reaction }} \quad \underset{$| ΔG^{\prime} |
| :--- |
| $(\text { kcal })$ |\(}{\substack{\Delta G^{s}

(kcal)}}\)

Reductive cycle
(A) $\mathrm{CO}_{2}+$ Ribul-1,5- $\mathrm{P}_{2}{ }^{4-}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2$ 3-P-glycerate ${ }^{3-}+2 \mathrm{H}^{+}$

-8.4	-9.8	R
+4.3	-1. 6	R
- I .8	-0.2	
-5.2	-0.4	
-3.4	-6.5	
+1.5	-0.9	
-5.6	-0.2	
-3.4	-7.1	R
+0.1	-1.4	R^{\prime}
+0.5	-0.1	
$+0.2$	-0.1	
-5.2	-3.8	
-0.5	-0.3	
-3.3	$(-7.2)^{*}$	

(Bassham and Krause, BBA 1969)
All 'close to equilibrium' reactions shuffle

Thermodynamic organisation of metabolism

tr.walls321.com - Pamukkale, Turkey

www.alamy.com - Loch Fyne, Scotland

CBB cycle energetics support this!

The Logic of the CBB

1)Near equilibrium reactions mix sugar phosphates, providing a range of substrates

The Logic of the CBB

1)Near equilibrium reactions mix sugar phosphates, providing a range of substrates
2)De-phosphorylation as thermodynamic driving force ($\Delta \mathrm{G}<0$)

The Logic of the CBB

1)Near equilibrium reactions mix sugar phosphates, providing a range of substrates
2) De-phosphorylation as thermodynamic driving force ($\Delta \mathrm{G}<0$)
3) Activation, carbon fixation, reduction (overall $\Delta \mathrm{G}<0$)

The Logic of the CBB

1)Near equilibrium reactions mix sugar phosphates, providing a range of substrates
2)De-phosphorylation as thermodynamic driving force ($\Delta \mathrm{G}<0$)
3) Activation, carbon fixation, reduction (overall $\Delta \mathrm{G}<0$)
4) Output

The pentose phosphate pathways uses the same equilibrium module

The Equilibrium Module

How to calculate the rapid equilibrium?

The Equilibrium Module

How to calculate the rapid equilibrium?
Thermodynamics
(see Supplementary to Kartal et al, 2011, MSB 7:542)

- Step 1: find conserved quantities

Formally:

3 conserved moieties: 2 from P, 1 from C

- P in odd-C sugars
- P in even- C sugars

Linearly independent solutions to $c \cdot N_{e_{7}}=0$
$C_{1}=(1,1,0,1,1,1,0,1,2,1)$
$P_{1}=G A P+D H E A P+X 5 P+R 5 P+R \operatorname{Ln} 5 P+S 7 P+2 F B P+S B P$
$c_{2}=(0,0,1,0,0,0,1,0,0,1)$
$P_{2}=E 4 P+F 6 P+S B P$
$c_{3}=(0,0,1,2,2,2,3,4,0,1)$
$Q=E 4 P+2(X 5 P+R S P+R U S P)+3 F 6 P+4 S 7 P+S B P$

The Equilibrium Module
How to calculate the rapid equilibrium?
Thermodynamics
(see Supplementary to Kartal et al, 2011, MSB 7:542)

- Step 2: minimise Gibbs free energy How to find the function

$$
f:\left(P_{1}, P_{2}, Q\right) \rightarrow \underbrace{(G A P, D H A P, E 4 P, X S P, R S P, R u 5 P, F 6 P, S 7 P, F B P, S B P)}_{M} \text { ? }
$$

THERMODYNAMIC APPROACH:

$$
G=\sum_{j \in M} x_{j} \mu_{j}+R T \cdot \sum_{j \in M} x_{j} \cdot\left(\ln x_{j}-1\right) \quad \begin{aligned}
& x_{j}: \text { concentrations } \\
& \mu_{j}: \text { chemical potentials }
\end{aligned}
$$

Gibbs energies of $\quad T$.mixing entropy
formation
Minimise G under constraints $C \cdot N=O$
\rightarrow Lagrangian Multipliers!

Solving the equilibrium module

3 equations with 3 unknowns:

$$
\begin{aligned}
& \quad \text { GAP Lagrange multiplier E4P } \\
& P_{1}=x_{0}\left(f_{0}+\kappa_{2} f_{2} Z+\kappa_{4} f_{4} z^{2}\right)+2 g x_{0}^{2}+g_{1} x_{0} x_{1} \\
& P_{2}=x_{1}\left(1+\kappa_{3} z\right)+g_{1} x_{0} x_{1} \\
& Q=x_{0}\left(2 f_{2} \kappa_{2} z+4 f_{4} \kappa_{4} z^{2}\right)+x_{1}\left(1+3 \kappa_{3} z\right)+g_{1} x_{0} x_{1}
\end{aligned}
$$

Notation:

x_{k} : compound with $k+3$ carbons

$$
\Longrightarrow x_{k+2}=x_{k} \cdot e^{-\Delta u} \cdot z
$$

A 3-variable model of the CBB cycle

Stoichiometry Matrix:

$$
N=\left[\begin{array}{ccccc}
-2 & 0 & 1 & -1 & 0 \\
1 & -1 & 0 & 0 & -1 \\
3 & 3 & -2 & 0 & -3
\end{array}\right]
$$

Differential Equations:

$$
\dot{x}=N \cdot v(y(x))
$$

with:

$$
\begin{aligned}
& X=\left\{P_{1}, P_{2}, Q\right\} \\
& Y=\{G A P, D H A P, E 4 P \ldots . S B P\}
\end{aligned}
$$

Chloroplast

Closing the cycle

First attempt: mass-action

$$
\begin{aligned}
& v_{1}=k_{1}[\mathrm{FBP}] \\
& v_{2}=k_{2}[\mathrm{SBP}] \\
& v_{3}=k_{3}[\mathrm{Ru} 5 \mathrm{P}] \\
& v_{4}=k_{4}[\mathrm{GAP}] \\
& v_{5}=k_{5}[\mathrm{~F} 6 \mathrm{P}]
\end{aligned}
$$

Closing the cycle

First attempt: mass-action

$$
\begin{aligned}
& v_{1}=k_{1}[\mathrm{FBP}] \\
& v_{2}=k_{2}[\mathrm{SBP}] \\
& v_{3}=k_{3}[\mathrm{Ru} 5 \mathrm{P}] \\
& v_{4}=k_{4}[\mathrm{GAP}] \\
& v_{5}=k_{5}[\mathrm{~F} 6 \mathrm{P}]
\end{aligned}
$$

UNSTABLE!

Closing the cycle

Second attempt: Michaelis-Menten

$$
\begin{aligned}
& v_{1}=V_{\max 1}[\mathrm{FBP}] /\left(K_{M 1}+[\mathrm{FBP}]\right) \\
& v_{2}=V_{\max 2}[\mathrm{SBP}] /\left(K_{M 2}+[\mathrm{SBP}]\right) \\
& v_{3}=V_{\max 3}[\mathrm{Ru} 5 \mathrm{P}] /\left(K_{M 3}+[\mathrm{Ru} 5 \mathrm{P}]\right) \\
& v_{4}=V_{\max 4}[\mathrm{GAP}] /\left(K_{M 4}+[\mathrm{GAP}]\right) \\
& v_{5}=V_{\max 5}[\mathrm{~F} 6 \mathrm{P}] /\left(K_{M 5}+[\mathrm{F} 6 \mathrm{P}]\right)
\end{aligned}
$$

Closing the cycle

Second attempt: Michaelis-Menten

$$
\begin{aligned}
& v_{1}=V_{\max }[\mathrm{FBP}] /\left(K_{M 1}+[\mathrm{FBP}]\right) \\
& v_{2}=V_{\max }[\mathrm{SBP}] /\left(K_{M 2}+[\mathrm{SBP}]\right) \\
& v_{3}=V_{\max }[\mathrm{Ru} 5 \mathrm{P}] /\left(K_{M 3}+[\mathrm{Ru} 5 \mathrm{P}]\right) \\
& v_{4}=V_{\max }[\mathrm{GAP}] /\left(K_{M 4}+[\mathrm{GAP}]\right) \\
& v_{5}=V_{\max 5}[\mathrm{~F} 6 \mathrm{P}] /\left(K_{M 5}+[\mathrm{F} 6 \mathrm{P}]\right)
\end{aligned}
$$

Finding 'good' $V_{\max } / K_{M}-$ values...

$$
\dot{X}=N \cdot v(Y(X))
$$

Jacobian

Optimising elasticities for stability
For irreversible reactions without allosteric regulation:

$$
H=\left(\begin{array}{lll}
& & \varepsilon_{1} \\
& \varepsilon_{3} & \\
\varepsilon_{4} & \varepsilon_{5} &
\end{array}\right) \quad \text { only } 5 \text { non-zero }
$$

$$
\left.J=N \cdot(H) \cdot \Theta_{3 \times 5}^{(5 \times 10}\right)
$$

For cuass-action kinetics $v_{j}=k_{j} \cdot X: \varepsilon_{j}=k_{j}$
Define, $\Lambda\left(\varepsilon_{j}\right):=\max _{\lambda}\{\operatorname{Re}(\lambda): \operatorname{det}(\lambda \cdot \mathbb{H}-\mathcal{J})=0\} \quad \begin{aligned} & \text { maximal } \\ & \text { Eigenvalue }\end{aligned}$
Find stable solution by minimising Λ

Optimising elasticities for stability
For irreversible reactions without allosteric regulation:

$$
H=\left(\begin{array}{llll}
& & & \varepsilon_{1} \\
& \varepsilon_{3} & & \varepsilon_{2} \\
\varepsilon_{4} & & \varepsilon_{5} &
\end{array}\right) \quad \text { only } 5 \text { non-zcro }
$$

$$
\gamma=N \cdot H \cdot O_{3 \times 5}
$$

For cuass-action kinetics $v_{j}=k_{j} \cdot X: \varepsilon_{j}=k_{j}$
Define, $\Lambda\left(\varepsilon_{j}\right):=\max _{\lambda}\{\operatorname{Re}(\lambda): \operatorname{det}(\lambda \cdot \mathbb{H}-\mathcal{J})=0\} \quad \begin{aligned} & \text { maximal } \\ & \text { Eigenvalue }\end{aligned}$
Find stable solution by minimising Λ

Optimising elasticities for stability
For irreversible reactions without allosteric regulation:

$$
H=\left(\begin{array}{llll}
& & \varepsilon_{1} \\
& \varepsilon_{3} & & \varepsilon_{2} \\
\varepsilon_{4} & & \varepsilon_{5} &
\end{array}\right) \quad \text { only } 5 \text { non-zero }
$$

$$
\gamma=N \cdot H \cdot \Theta_{3 \times 5}
$$

For cuass-action kinetics $v_{j}=k_{j} \cdot X: \varepsilon_{j}=k_{j}$
Define, $\Lambda\left(\varepsilon_{j}\right):=\max _{\lambda}\{\operatorname{Re}(\lambda): \operatorname{det}(\lambda \cdot \mathbb{H}-\mathcal{J})=0\} \quad \begin{aligned} & \text { maximal } \\ & \text { Eigenvalue }\end{aligned}$
Find stable solution by minimising Λ

"Predicted" elasticities

The photosynthetic Gibbs effect

The photosynthetic Gibbs effect

But (Gibbs \& Kandler, 1957, PNAS): Label appears first in position 4!
TABLE 1
Distribution of $\mathbf{C l}^{14}$ in Glucose

Plant	Light Intensity(Foot-Candles)	Time	Glucose Source	Tracer Content of Glucose Carbon Atoms ($\mathrm{M}_{\mu} \mathrm{C} / \mathrm{MGC}$)					
				-	-	${ }_{3}$	(5	6
Chlorella*	4,000	10 sec .	Starch	0.35	0.27	3.67	4.90	0.10	0.16
Chlorella \dagger	4,000	60 sec .	Starch	1.16	1.15	5.16	7.00	0.42	0.46
Chlorella \ddagger	700	45 min .	Starch	22.5	22.8	25.4	26.4	22.5	23.3
Tobacco ${ }^{\text {8 }}$	4,000	50 sec .	Starch	2.69	4.30	11.0	18.6	1.17	2.99
Tobacco ${ }^{8}$	100	180 sec .	Starch	8.55	10.7	25.9	37.5	9.12	8.21
Sunflower 8	70	15 min .	Sucrose	0.55	0.60	1.20	2.29	0.48	0.54
Canna	2,000	24 hrs .	Sucrose	5.36	5.16	5.19	5.08	5.08	5.12

Simple explanation for 3 and 4

What about the other positions?

Bassham 1964:
"...because of the reversibility of transketolase..."

Glucose Source	-Tracer Content of Glucose Carbon Atoms-					
	1	2	${ }_{3}{ }_{3}$	${ }_{4}$	5	6
Starch	0.35	0.27	3.67	4.90	0.10	0.16
Starch	1.16	1.15	5.16	7.00	0.42	0.46
Starch	22.5	22.8	25.4	26.4	22.5	23.3
Starch	2.69	4.30	11.0	18.6	1.17	2.99
Starch	8.55	10.7	25.9	37.5	9.12	8.21
	8.5	10.7	25	\cdots	n	1

A dynamic model of isotope label distribution

Workflow

- stable Michaelis-Menten model, as developed above
- parameters to fit some measured steady-state
- multiply each metabolite by all possible isotope patterns ($2^{\# \subset}$): total 512 metabolites
- multiply each reaction by all possible isotope patterns of substrates: total 13368 rate expressions

A dynamic model of isotope label distribution

Workflow

- stable Michaelis-Menten model, as developed above
- parameters to fit some measured steady-state
- multiply each metabolite by all possible isotope patterns ($2^{\# C}$): total 512 metabolites
- multiply each reaction by all possible isotope patterns of substrates: total 13368 rate expressions

Slow TPI pronounces asymmetry

TK activity influences other labels

Conclusions

A minimal model of the Calvin-Benson-Bassham Cycle. Why bother?

- Modelling is simplification!
- "Simplicity is the ultimate sophistication" (Leonardo da Vinci)
- Simple designs allow for general conclusions and deeper understanding
- A (stable) minimal model serves as an easy-to-use module
- more complex metabolic models
- link with photosynthetic electron transport chain models
- Forms the basis for exploring dynamic isotope labelling
- The Gibbs effect can be easily explained
- It is an emergent property of the CBB cycle
- We can understand which processes influence label dynamics

Thank you

Collaborators:

Experiments: Martin Steup (Potsdam)
Sebastian Mahlow
Sam Zeeman (Zurich)
Barbara Pfister
Rob Field (Norwich)
Mike Rugen
Douglas Murray (Tsuruoka)
Theory: Önder Kartal (Zurich)
Alexander Skupin (Luxemburg)

Financial Support

Internet: http://qtb.hhu.de
Public wiki: http://wiki.hhu.del
Software \& Models: http:/Igithub.com/QTB-HHU
@qtbduesseldorf

Food for thoughts

It appears that metabolism is organised as an interplay of 'entropic' and 'energetic' enzymes

- Why?
- Are there principles behind this organisation?
- How is this connected to resource allocation?

Solving the equilibrium module

3 equations with 3 unknowns:
GAP Lagrange multiplier
E4P
$P_{1}=X_{0}\left(f_{0}+\kappa_{2} f_{2} Z+\kappa_{4} f_{4} z^{2}\right)+2 g x_{0}^{2}+g_{1} x_{0} X_{1}$
$P_{2}=x_{1}\left(1+\kappa_{3} z\right)+g_{1} x_{0} x_{1}$
Notation:
x_{k} : compound with $k+3$ carbons
$Q=x_{0}\left(2 f_{2} \kappa_{2} z+4 f_{4} \kappa_{4} z^{2}\right)+x_{1}\left(1+3 \kappa_{3} z\right)+g_{1} x_{0} x_{1}$

Necessary condition: $P_{2}<Q<4 P_{1}+3 P_{2}$
What happens at the extremes?
$Q \rightarrow P_{2}:$
accumulation of small sugars
$Q \rightarrow 4 P_{1}+3 P_{2}:$ accumulation of large sugars

Back to the real world

What happens if the rapid equilibrium is not exactly fulfilled?

- Model the fast reactions as mass-action
- Tune the time-scale separation with one parameter
system breaks down

When time-scales are not clearly separated, other regulatory mechanisms are necessary!
similar time-scales

Displacement from equilibrium

The lowest $\Delta \mathrm{G}$ is just $-0.5 \mathrm{kcal} / \mathrm{mol}$!

But Bassham measured -1.4...

Total Gibbs free energy above equilibrium

Losing control

The positive control of SBPase

Accelerating SBPase increases its substrate!!
control coefficients for SBPase

The positive control of SBPase

Accelerating SBPase increases its substrate!!

positive feedback! Stability problem...

