

Entropy in Metabolism and the Emergence of Complex Structures

Oliver Ebenhöh

Luxembourg, 16.2.2017

Overview: Ongoing research

Photosynthetic Acclimation

- Understand the regulation of photosynthesis
- Nonphotochemical quenching, state transitions

Designing Starch ERA-CAPS

- Explain polymer biochemistry with statistical thermodynamics
- Understand the formation of a starch granule

 Use algae to extract P from wastewater and apply as fertilizer to soil

• Fatty acids / designer oils

Starch – half the caloric uptake of humanity

pictures from:

- 1 cropsforthefuture.org / commons.wikimedia.org (Author: NusHub) 5
 - 2 nutr130.wikispaces.com
 - 3 nutr130.wikispaces.com
 - 4 newworldencyclopedia.org

- 5 freefoodfotos.com
- 6 commons.wikimedia.org (Author: KATORISI)
- 7 mappingignorace.org (Sanjeev Gupta / EPA)
- 8 commons.wikimedia.org (Author: P. Brundel)

Why starch?

The structure of starch allows for an extremely high energy storage density

Alternatives

energy content (kJ/g)

Carbohydrates	17
Lipids	38
Proteins	17
Alcohol	30

Possible advantages of starch

- low osmolarity
- large size
- high density

We (animals and fungi) predominantly use glycogen

big molecule (up to 10 MDa)

still small compared to starch

 $3 \cdot 10^{10} \text{ Da!!!}$

Alternatives

energy content (kJ/g)

Carbohydrates	17
Lipids	38
Proteins	17
Alcohol	30

We (animals and fungi) predominantly use glycogen

Possible advantages of starch

- low osmolarity
- large size
- high density

big molecule (up to 10 MDa)

still small compared to starch

 $3 \cdot 10^{10} \text{ Da}!!!$

optimised for storage density, slower deployment

The structure of a starch granule

Wouldn't it be great...

...if we could design starch with desired properties in vivo?

But how do all these factors actually play together?

Wouldn't it be great...

... if we could design starch with desired properties in vivo?

But how do all these factors actually play together?

A classical physics problem

TOP-DOWN OR BOTTOM-UP?

(ETH Zurich)

Oliver Ebenhöh, Adélaïde Ragui (HHU Düsseldorf)

Starch metabolism: ingredients

A unique molecule

Genealogy of the tree (mother-daugther connections)

Steven Ball et al. Cell 96

Starch metabolism: ingredients

The main reactions

Elongation α -1,4 \longrightarrow α -1,4 (+1)

Branching (cut & re-branch) α -1,4 $\rightarrow \alpha$ -1,6

Debranching α -1,6 $\longrightarrow \emptyset$

Starch metabolism bottom-up

Disproportionating enzymes (D-enzymes)

EC: 2.4.1.25

but not only!

catalyses 2 maltotriose \rightarrow maltopentaose + glucose $G3+G3 \rightarrow G5+G1$

G1 G2 G3 Ğ4 **G**5 M **G5 G4** G3

DPE1 produces a set of glucans of different length in *in vitro* assays.

(Takaha et al., JBC 1993)

Disproportionating enzymes (D-enzymes)

*K*_{eq}???

Positional Isomers

Different binding modes of the donor substrate exists

- \implies 1, 2 or 3 glucose residues can be transferred
- The general reaction equation is $G_n + G_m G_{n-q} + G_{m+q}$ with q=1,2,3

Positional Isomers

Different binding modes of the donor substrate exists

- \implies 1, 2 or 3 glucose residues can be transferred
 - The general reaction equation is $G_n + G_m G_{n-q} + G_{m+q}$ with q=1,2,3

For such a reaction, what is the meaning of K_{M} ???

Disproportionating enzymes (D-enzymes)

transfers glucosyl residues from one glucan to another: $G_n + G_m \leftarrow G_{n-q} + G_{m+q}$

reaction must proceed towards a smaller Gibbs free energy : $\Delta G = \Delta H - T \Delta S < 0$

energy neutral (enthalpy of α -1,4-bond hydrolysis independent on position): $\Delta H = 0$ (Goldberg et al, 1992)

DPE1 maximises the entropy of the polydisperse reactant mixture

Polydisperse mixtures as statistical ensembles

X_i : molar fraction of glucans with length *i* corresponds to occupation number of state *i*

The distribution $|X_i|$ fully characterises the polydisperse reactant mixture

The entropy of the statistical ensemble is $S = -\sum x_k \ln x_k$

Equilibrium is determined by maximal entropy:

$$S = -\sum x_k \ln x_k \rightarrow \max!$$

Maximum entropy principle under constraint that #bonds and #molecules is conserved!

conservation of #molecules:

conservation of #bonds:

$$\sum x_k = 1$$

$$\sum k \cdot x_k = b$$

determined by initially applied mixture of maltodextrins

Solution using Lagrangian multipliers: Necessary conditions are given by

$$\frac{\partial L}{\partial x_k} = 0 \quad \text{with} \quad L(x_k; \alpha, \beta) = \sum_k x_k \ln(x_k) + \alpha \left(\sum_k x_k - 1\right) + \beta \left(\sum_k k \cdot x_k - b\right)$$

 $\Leftrightarrow \ln(x_k) + 1 + \alpha + k \beta = 0$ for all k

Solution using Lagrangian multipliers: Necessary conditions are given by

$$\frac{\partial L}{\partial x_k} = 0 \quad \text{with} \quad L(x_k; \alpha, \beta) = \sum_k x_k \ln(x_k) + \alpha \left(\sum_k x_k - 1\right) + \beta \left(\sum_k k \cdot x_k - b\right)$$

 $\Leftrightarrow \ln(x_k) + 1 + \alpha + k \beta = 0$ for all k

$$= \sum_{k} x_{k} = \frac{1}{Z} e^{-k\beta} \text{ with } Z = \sum_{k} e^{-k\beta}$$

Solution using Lagrangian multipliers: Necessary conditions are given by

$$\frac{\partial L}{\partial x_k} = 0 \quad \text{with} \quad L(x_k; \alpha, \beta) = \sum_k x_k \ln(x_k) + \alpha \left(\sum_k x_k - 1\right) + \beta \left(\sum_k k \cdot x_k - b\right)$$

 $\Leftrightarrow \ln(x_k) + 1 + \alpha + k \beta = 0$ for all k

$$= \sum_{k} x_{k} = \frac{1}{Z} e^{-k\beta} \text{ with } Z = \sum_{k} e^{-k\beta}$$

Analogy to statistical physics! There, $\beta = \frac{1}{k_B \cdot T}$

Solution using Lagrangian multipliers: Necessary conditions are given by

$$\frac{\partial L}{\partial x_k} = 0 \quad \text{with} \quad L(x_k; \alpha, \beta) = \sum_k x_k \ln(x_k) + \alpha \left(\sum_k x_k - 1\right) + \beta \left(\sum_k k \cdot x_k - b\right)$$

 $\Leftrightarrow \ln(x_k) + 1 + \alpha + k \beta = 0$ for all k

$$= \sum_{k} x_{k} = \frac{1}{Z} e^{-k\beta} \text{ with } Z = \sum_{k} e^{-k\beta}$$

Analogy to statistical physics! There, $\beta = \frac{1}{k_B \cdot T}$

Calculation of
$$\beta$$
: $-\frac{1}{Z}\frac{\partial Z}{\partial \beta} = b \iff \beta = \ln \frac{b+1}{b}$

Solution using Lagrangian multipliers: Necessary conditions are given by

$$\frac{\partial L}{\partial x_k} = 0 \quad \text{with} \quad L(x_k; \alpha, \beta) = \sum_k x_k \ln(x_k) + \alpha \left(\sum_k x_k - 1\right) + \beta \left(\sum_k k \cdot x_k - b\right)$$

 $\Leftrightarrow \ln(x_k) + 1 + \alpha + k \beta = 0$ for all k

$$= \sum_{k} x_{k} = \frac{1}{Z} e^{-k\beta} \text{ with } Z = \sum_{k} e^{-k\beta}$$

Analogy to statistical physics! There, $\beta = \frac{1}{k_B \cdot T}$

Calculation of
$$\beta$$
: $-\frac{1}{Z}\frac{\partial Z}{\partial \beta} = b \iff \beta = \ln \frac{b+1}{b}$

Maximal entropy in equilibrium: $S_{max} = (b+1)\ln(b+1) - b\ln b$

DPE1 is entropy driven

Experiments with Martin Steup, University of Potsdam

method: capillary electrophoresis

 β is a generalisation of the equilibrium constant for polydisperse mixtures

(Kartal et al, 2011, Mol Syst Biol)

The dynamics of DPE1

Two time scales!

The dynamics of DPE1

Affinities: K_M

ratio 1:800

The simulations used 3 parameters:

- maximal turnover
- affinity for positional isomer 1
- affinities for positional isomers 2 and 3

Theory is also confirmed by DPE2

DPE2 vs DPE1

- transfers single glucosyl residues
- G2 only used as donor
- G3 only used as acceptor

<u>Generic reaction catalysed:</u>

 $G_n + G_1 \longleftarrow G_{n-1} + G_2$

Entropic principle: $S = -\sum_{k} x_{k} \ln x_{k} \rightarrow \max$ with one additional side constraint $x_{1} + x_{2} = m = \text{const.} \quad \left(\text{and} \sum x_{k} = 1; \sum k \cdot x_{k} = b \right)$

Theory is also confirmed by DPE2

DPE2 vs DPE1

- transfers single glucosyl residues
- G2 only used as donor
- G3 only used as acceptor

<u>Generic reaction catalysed:</u>

 $G_n + G_1 \longleftarrow G_{n-1} + G_2$

Entropic principle:

$$S = -\sum_{k} x_{k} \ln x_{k} \rightarrow \max$$
with one additional side constraint

$$x_{1} + x_{2} = m = \text{const.} \quad \left(\text{and} \sum x_{k} = 1; \sum k \cdot x_{k} = b \right)$$

Generalisation to non-zero enthalpy changes

Prediction: Similar pattern as for DPE2

Experimentally confirmed.

(Kartal et al, Supp to MSB 2011; Ebenhöh et al, Proc 5th ESCEC 2013)

An entropy-driven buffer

What is the role of the SHG pool?

Two 'entropic' enzymes mediate the turnover of a polydisperse pool

What is the advantage over other hypothetical systems?
What is the role of the SHG pool?

Polydisperse SHG pools increases robustness in vivo

Challenge: explain observations with bottom-up approach

Goal: reproduce emergent macroscopic properties with microscopic model

time=0

Top-down: expressing starch-like polymers in yeast

STARCH IN YEAST?

Barbara Pfister

- Delete all 7 glycogen biosynthesis genes
- Progressively add Arabidopsis genes
- All lines express AGPase and both BE isoforms
- Variable combinations of starch synthases with the presence/absence of ISA

Conclusion & Outlook:

- We are only beginning to understand...
- We get something that looks like starch, but is not!
- How does this actually work?
- How can we control the properties of the insoluble glucans?

Where else do find entropic enzymes?

...for example

Maltosyltransferases in Streptomyces

"Acceptor specificity" can be explained by entropic principles

Where else do find entropic enzymes?

http://metamap.blogspot.de/2013/01/blog-post.html

Octulose-8P oscillates in respiratory cycle in yeast

Data from Douglas Murray (unpublished), Keio University, Tsuruoka, Japan showing metabolite levels over yeast oscillatory cycles, including Octulose-8phosphate

O8P oscillations in phase with other PPP intermediates

Calvin cycle energetics

TABLE IV

FREE ENERGY CHANGES OF THE PENTOSE PHOSPHATE CYCLES IN C. pyrenoidosa

Reaction	$\Delta G'$ (kcal)	ΔG^{s} (kcal)	
Reductive cycle	and the fifth of the second		
(A) CO_2 + Ribul-1,5- P_2^{4-} + $H_2O \rightarrow 2$ 3- P -glycerate ³⁻ + 2 H ⁺ (B) H ⁺ + 3- P -glycerate ³⁻ + ATP ⁴⁻ + NADPH	-8.4	-9.8 R	
$\rightarrow ADP^{3-} + glyceraldehyde - 3 - P^{2-} + NADP^{+} + P_1^{2-}$	+4.3	-1.6	
(C) Glyceraldehyde- $3^{-}P^{2-} \rightarrow dihydroxyacetone-P^{2-}$	-1.8	-0.2	lso
(D) Glyceraldehyde-3- P^{2-} + dihydroxyacetone- $P^{2-} \rightarrow$ Fru-1,6- P_{2}^{4-}	-5.2	-0.4	Ald
(E) $Fru_{1,6}P_{2}^{4-} + H_{2}O \rightarrow Fru_{6}P^{2-} + P_{1}^{2-}$	-3.4	-6.5 R	7
(F) Fru-6- P^{2-} + glyceraldehyde-3- P^{2-} \rightarrow Ery-4- P^{2-} + Xyl-5- P^{2-}	+1.5	-0.9	ТК
(G) Ery-4- P^{2-} + dihydroxyacetone- $P^{2-} \rightarrow$ Sed-1,7- P_{2}^{4-}	-5.6	-0.2	
(H) Sed-1,7- P_2^{4-} + H ₂ O \rightarrow Sed-7- P^{2-} + P ₁ ²⁻	-3.4	-7.I R	ΑΙα
(I) Sed-7- P^{2-} + glyceraldehyde-3- P^{2-} \rightarrow Rib-5- P^{2-} + Xyl-5- P^{2-}	+0.1	-1.4	тк
(J) Rib-5- $P^{2-} \rightarrow \text{Ribul}-5-P^{2-}$	+0.5	0.1	
(K) $Xyl-5-P^{2-} \rightarrow Ribul-5-P^{2-}$	+0.2	- O. I	
(L) Ribul-5- P^{2-} + ATP ⁴⁻ \rightarrow Ribul-1,5- P_2^{4-} + ADP ³⁻ + H ⁺	-5.2	-3.8 R'	150
(M) $\operatorname{Fru-6-}P^{2-} \rightarrow \operatorname{Glc-6-}P^{2-}$	-0.5	-0.3	Iso
(N) Glc-6- P^{2-} + H ₂ O $\rightarrow \alpha$ -D-Glc + P _i ²⁻	-3.3	$(-7.2)^{*}$	130

(Bassham and Krause, BBA 1969)

All 'close to equilibrium' reactions shuffle

Thermodynamic organisation of metabolism

CBB cycle energetics support this!

www.alamy.com - Loch Fyne, Scotland

1)Near equilibrium reactions mix sugar phosphates, providing a range of substrates

- 1)Near equilibrium reactions mix sugar phosphates, providing a range of substrates
- 2)De-phosphorylation as thermodynamic driving force (ΔG<0)

- 1)Near equilibrium reactions mix sugar phosphates, providing a range of substrates
- 2)De-phosphorylation as thermodynamic driving force (ΔG<0)
- 3)Activation, carbon fixation, reduction (overall ΔG<0)

1)Near equilibrium reactions mix sugar phosphates, providing a range of substrates

- 2)De-phosphorylation as thermodynamic driving force (ΔG<0)
- 3)Activation, carbon fixation, reduction (overall ΔG<0)

4)Output

The pentose phosphate pathways uses the same equilibrium module

The Equilibrium Module

How to calculate the rapid equilibrium?

The Equilibrium Module

How to calculate the rapid equilibrium?

Thermodynamics

(see Supplementary to Kartal et al, 2011, MSB 7:542)

• Step 1: find conserved quantities

3 conserved moieties: 2 from P, 1 from C

- P in odd-C sugars
- P in even-C sugars

The Equilibrium Module

How to calculate the rapid equilibrium?

Thermodynamics

(see Supplementary to Kartal et al, 2011, MSB 7:542)

Step 2: minimise Gibbs free energy
 How to find the function

 $f:(P_1, P_2, Q) \rightarrow (GAP, DHAP, E4P, XSP, RSP, Rusp, F6P, S7P, FBP, SBP)$? THERMODYNAMIC APPROACH:

G =
$$\sum_{j \in M} x_j \mu_j + RT \cdot \sum_{j \in M} x_j \cdot (\ln x_j - 1)$$

Gibbs energies of $T \cdot mixing entropy$
formation
Minimise G under constraints $C \cdot N = O$
-> LAGRANGIAN MULTIPLIERS

Solving the equilibrium module

3 equations with 3 unknowns:

Notation:

 x_k : compound with k+3 carbons

GAP Lagrange multiplier E4P $P_{1} = \mathbf{x}_{0} (f_{0} + \kappa_{2} f_{2} \mathbf{z} + \kappa_{4} f_{4} \mathbf{z}^{2}) + 2 g x_{0}^{2} + g_{1} x_{0} \mathbf{x}_{1}$ $P_2 = x_1(1+\kappa_3 z)+g_1 x_0 x_1$

A 3-variable model of the CBB cycle

Second attempt: Michaelis-Menten

 $v_{1} = V_{\max 1} [FBP] / (K_{M1} + [FBP])$ $v_{2} = V_{\max 2} [SBP] / (K_{M2} + [SBP])$ $v_{3} = V_{\max 3} [Ru5P] / (K_{M3} + [Ru5P])$ $v_{4} = V_{\max 4} [GAP] / (K_{M4} + [GAP])$ $v_{5} = V_{\max 5} [F6P] / (K_{M5} + [F6P])$

Finding 'good'
$$V_{\text{max}} / K_{M} - \text{values...}$$

$$\dot{X} = N \cdot v \left(Y(X) \right)$$
Jacobian
$$J_{ik} = \sum_{j} n_{ij} \frac{\partial v_{j}}{\partial X_{k}} \text{ or } J = N \cdot E$$

$$c_{jk} = \frac{\partial v_{j}}{\partial X_{k}} \cdot \frac{\partial v_{e}}{\partial X_{k}} \text{ or } J = N \cdot H \cdot H$$

$$r_{jk} = \frac{\partial v_{j}}{\partial X_{k}} \cdot \frac{\partial v_{e}}{\partial X_{k}} \text{ or } J = N \cdot H \cdot H$$

relasticities Eik

Optimising elasticities for stability

Optimising elasticities for stability

Optimising elasticities for stability

0.004

0.002

"Predicted" elasticities

The photosynthetic Gibbs effect

Intuitive (naïve) assumption:

Label should appear symmetrically in position 3 and 4

The photosynthetic Gibbs effect

Intuitive (naïve) assumption:

Label should appear symmetrically in position 3 and 4

But (Gibbs & Kandler, 1957, PNAS): Label appears first in position 4!

TABLE 1

DISTRIBUTION OF C¹⁴ IN GLUCOSE

	LIGHT INTENSITY GLUCOSE			$(M\mu C/MgC)$					
PLANT	(FOOT-CANDLES)	TIME	SOURCE	1	2	3	4	5	6
Chlorella*	4,000	10 sec.	Starch	0.35	0.27	3.67	4.90	0.10	0.16
Chlorella [†]	4,000	60 sec.	Starch	1.16	1.15	5.16	7.00	0.42	0.46
Chlorella [‡]	700	45 min.	Starch	22.5	22.8	25.4	26 .4	22.5	23.3
Tobacco	4,000	50 sec.	Starch	2.69	4.30	11.0	18.6	1.17	· 2 . 99
Tobacco §	100	180 sec.	Starch	8.55	10.7	25.9	37.5	9.12	8.21
Sunflower	70	15 min.	Sucrose	0.55	0.60	1.20	2.29	0.48	0.54
Canna	2,000	24 hrs.	Sucrose	5.36	5.16	5.19	5.08	5.08	5.12

Simple explanation for 3 and 4

What about the other positions?

Bassham 1964:

"...because of the reversibility of transketolase..."

	-TRAC	CER CONTI	ENT OF GL	UCOSE CA	RBON AT	OMS
GLUCOSE	$(M\mu C/MgC)$					
SOURCE	1	2	3	4	5	6
Starch	0.35	0.27	3.67	4.90	0.10	0.16
Starch	1.16	1.15	5.16	7.00	0.42	0.46
Starch	22.5	22.8	25.4	26.4	22.5	23.3
Starch	2.69	4.30	11.0	18.6	1.17	2.99
Starch	8.55	10.7	25.9	37.5	9.12	8.21
0	0	0 00	1 00	0 00	A 40	0 24

A dynamic model of isotope label distribution

<u>Workflow</u>

- stable Michaelis-Menten model, as developed above
- parameters to fit some measured steady-state
- multiply each metabolite by all possible isotope patterns (2^{#C}): total 512 metabolites
- multiply each reaction by all possible isotope patterns of substrates: total 13368 rate expressions

A dynamic model of isotope label distribution

<u>Workflow</u>

- stable Michaelis-Menten model, as developed above
- parameters to fit some measured steady-state
- multiply each metabolite by all possible isotope patterns (2^{#C}): total 512 metabolites
- multiply each reaction by all possible isotope patterns of substrates: total 13368 rate expressions

Slow TPI pronounces asymmetry

TK activity influences other labels

Conclusions

A minimal model of the Calvin-Benson-Bassham Cycle. Why bother?

- Modelling is simplification!
 - "Simplicity is the ultimate sophistication" (Leonardo da Vinci)
 - Simple designs allow for general conclusions and deeper understanding
- A (stable) minimal model serves as an easy-to-use module
 - more complex metabolic models
 - link with photosynthetic electron transport chain models
- Forms the basis for exploring dynamic isotope labelling
 - The Gibbs effect can be easily explained
 - It is an emergent property of the CBB cycle
 - We can understand which processes influence label dynamics
Thank you

Collaborators:

- Experiments: Martin Steup (Potsdam) Sebastian Mahlow Sam Zeeman (Zurich) **Barbara** Pfister Rob Field (Norwich) Mike Rugen Douglas Murray (Tsuruoka)
- Theory: Önder Kartal (Zurich) Alexander Skupin (Luxemburg)

Financial Support

Cluster of Excellence on Plant Sciences

CEPLAS

Bundesministerium für Bildung und Forschung

Internet: http://gtb.hhu.de Public wiki: http://wiki.hhu.de/ Software & Models: http://github.com/QTB-HHU

@qtbduesseldorf

Food for thoughts

It appears that metabolism is organised as an interplay of 'entropic' and 'energetic' enzymes

- Why?
- Are there principles behind this organisation?
- How is this connected to resource allocation?

Solving the equilibrium module

3 equations with 3 unknowns:

GAP Lagrange multiplier E4P

$$P_{1} = x_{0}(f_{0} + \kappa_{2}f_{2}Z + \kappa_{4}f_{4}z^{2}) + 2gx_{0}^{2} + g_{1}x_{0}x_{1}$$

$$P_{2} = x_{1}(1 + \kappa_{3}z) + g_{1}x_{0}x_{1}$$

$$Q = x_{0}(2f_{2}\kappa_{2}z + 4f_{4}\kappa_{4}z^{2}) + x_{1}(1 + 3\kappa_{3}z) + g_{1}x_{0}x_{1}$$

Notation:

 x_k : compound with k+3 carbons

$$P_1 P_2$$

$$Q = C - 3 P$$

Necessary condition: $P_2 < Q < 4P_1 + 3P_2$

What happens at the extremes?

 $Q \rightarrow P_2$: accumulation of small sugars $Q \rightarrow 4P_1+3P_2$: accumulation of large sugars

Back to the real world

What happens if the rapid equilibrium is not exactly fulfilled?

- · Model the fast reactions as mass-action
- Tune the time-scale separation with one parameter

Displacement from equilibrium

The lowest ΔG is just -0.5 kcal/mol!

Total Gibbs free energy above equilibrium

Losing control

The positive control of SBPase

The positive control of SBPase

positive feedback! Stability problem...