

Mathematical models of plant energy metabolism

Towards synthetic starch

Oliver Ebenhöh

Bordeaux, 2.10.2015

Institute for Quantitative and Theoretical Biology

Internet: http://qtb.hhu.de

Public wiki: http://wiki.hhu.de/

Software & Models: http://github.com/QTB-HHU

@qtbduesseldorf

Ongoing research projects:

- Acclimation of Photosynthesis
- Starch metabolism
- Lipid production in microalgae
- Secondary metabolism in plants
- Plant/Algae-microbe interactions
- Evolution of metabolism
- Biotechnological applications

Why do we need mathematical models?

- Simplified representation of reality
- Reduction to the essentials

"Simplicity is the ultimate sophistication" (Leonardo da Vinci)

Why do we need mathematical models?

- Simplified representation of reality
- Reduction to the essentials

"Simplicity is the ultimate sophistication" (Leonardo da Vinci)

 \Rightarrow Models help to discover general principles!

Why do we need mathematical models?

- Simplified representation of reality
- Reduction to the essentials

"Simplicity is the ultimate sophistication"

(Leonardo da Vinci)

Models help to discover general principles!

Example from physics:

www.thehungryandfoolish.com

www.hh.schule.de

www.welt.de

How does one find principles (theory building)?

How does one find principles (theory building)?

$$\vec{F} = m \cdot \vec{a}$$

Intuition

Every model is a small step on this path

???

How does one find principles (theory building)?

 $\vec{F} = m \cdot \vec{a}$

Every model is a small step on this path

???

- Model predictions / new hypotheses
- Suggestions for new experiments
- Improvement of experimental design

- Initial model formulation
- Confirmation / falsification of predictions

Intuition

• New model assumptions

The Systems biology principle

Modelling techniques - overview

Network Analysis

- · Static description
- · No kinetic parameters

Qualitative Models

Topological properties

Stoichiometric Analysis

- Static description
- · No kinetic parameters
- Quantitative predictions

Structural Kinetic Models

- · Dynamic description
- · No kinetic parameters
- · Bifurcation structure

Kinetic Models

Dynamic description

Level of Detail

- Kinetic parameters
- · Differential equations

(Steuer, 2007)

Starch – half of the calories in the human diet

pictures from:

- 1 cropsforthefuture.org / commons.wikimedia.org (Author: NusHub) 5
 - 2 nutr130.wikispaces.com
 - 3 nutr130.wikispaces.com
 - 4 newworldencyclopedia.org

- 5 freefoodfotos.com
- 6 commons.wikimedia.org (Author: KATORISI)
- 7 mappingignorace.org (Sanjeev Gupta / EPA)
- 8 commons.wikimedia.org (Author: P. Brundel)

What is starch?

The structure of a starch granule

Why starch?

The structure of starch allows for an extremely high energy storage density

Why starch?

Alternatives?

energy content	(kJ/g)
----------------	--------

Carbohydrates	17
Lipids	38
Proteins	17
Alcohol	30

Possible advantages of starch

- low osmolarity
- large size
- high density

We (animals and fungi) predominantly use glycogen

big molecule (up to 10 MDa)

still small compared to starch

 $3 \cdot 10^{10} \text{ Da!!!}$

Why starch?

Alternatives?

	energy content (kJ/g)
Carbohydrates	17
Lipids	38
Proteins	17
Alcohol	30

We (animals and fungi) predominantly use glycogen

Possible advantages of starch

- low osmolarity
- large size
- high density

big molecule (up to 10 MDa)

still small compared to starch

 $3 \cdot 10^{10} \text{ Da}!!!$

optimised for storage density, slower deployment

How is starch made?

ADP

Amyloplast

Respiration

(Mitochondria)

---- ATP

Cytosol

from: Geigenberger 2011 (*Plant Phys*)

How is starch made?

from: Geigenberger 2011 (Plant Phys)

How is starch made?

Many different processes play together!

- starch synthases
- branching enzymes
- phosphorylases
- isoamylases

1. Surface-active enzymes

Rate laws for surfactive enzymes

dissolved substrate

aggregated substrate

(with interfacial reaction space)

v = f(?)

Rate laws for surfactive enzymes

dissolved substrate

aggregated substrate (with interfacial reaction space)

v=f(?)

Reaction space confined to 2D!

Rate laws for surfactive enzymes

Reaction space confined to 2D!

Implications! - Fundamental differences to the classical case in solution:

- Relative activity dependent on enzyme concentration (jamming)
- Rate not independent on presence of other enzyme species! (competition)

Derivation of a generic surfactive rate-law

Kartal and Ebenhöh (2013) FEBS Letters – centenary issue commemorating Michaelis-Menten 'Kinetik der Invertinwirkung'

Derivation of a generic surfactive rate-law

$$\nu = \frac{1}{1 + k_{\rm A}a_{\rm s}\Phi_{\rm eq}[M]\left(1 + \frac{\langle *S\rangle}{K_{\rm mS}} + \frac{\langle *P\rangle}{K_{\rm mP}}\right)} = \frac{1}{1 + \frac{[M]}{K_{\rm mM}^{\rm app}}}$$

Kartal and Ebenhöh (2013) FEBS Letters – centenary issue commemorating Michaelis-Menten 'Kinetik der Invertinwirkung'

Derivation of a generic surfactive rate-law

Kartal and Ebenhöh (2013) FEBS Letters – centenary issue commemorating Michaelis-Menten 'Kinetik der Invertinwirkung'

The adsorption equilibrium

Adsorption rate:

 $r_a \propto c(E) \cdot \Phi$

Desorption rate:

Other adsorption models can give quite different results:

Consequences for experimental design

mass alone is insufficient!

Define Experimental Standard Conditions for surface-active enzymes!

A kinetic model of starch surface attack

- Disruption of crystalline surface by phosphorylation allows access for BAM and ISA
- Dephosphorylation by DSP enables further degradation

Simulations compared to experiment

Good agreement with data from Kötting et al (2009) Plant Cell

But: only one time point!

2. Polymer Biochemistry

Disproportionating enzymes (D-enzymes)

EC: 2.4.1.25

Main function in starch degradation: $G_3 + G_3 \longrightarrow G_5 + G_1$ But general reaction: $G_n + G_m \bigstar G_{n-q} + G_{m+q}, q = (1, 2, 3)$

(Takaha et al., JBC 1993)

DPE1 produces a set of glucans of different length in *in vitro* assays.

Disproportionating enzymes (D-enzymes)

(Takaha et al., JBC 1993)

*K*_{eq}???

Disproportionating enzymes (D-enzymes)

transfers glucosyl residues from one glucan to another: $G_n + G_m - G_{n-q} + G_{m+q}$

reaction must proceed towards a smaller Gibbs free energy : $\Delta G = \Delta H - T \Delta S < 0$

energy neutral (enthalpy of α -1,4-bond hydrolysis independent on position): $\Delta H = 0$ (Goldberg et al, 1992)

DPE1 maximises the entropy of the polydisperse reactant mixture

Polydisperse mixtures as statistical ensembles

X_i : molar fraction of glucans with length *i* corresponds to occupation number of state *i*

The distribution $|X_i|$ fully characterises the polydisperse reactant mixture

The entropy of the statistical ensemble is $S = -\sum x_k \ln x_k$

Equilibrium is determined by maximal entropy:

$$S = -\sum x_k \ln x_k \rightarrow \max!$$

Maximum entropy principle under constraint that #bonds and #molecules is conserved!

conservation of #molecules:

conservation of #bonds:

$$\sum x_k = 1$$

$$\sum k \cdot x_k = b$$

determined by initially applied mixture of maltodextrins

Entropic approach

Solution using Lagrangian multipliers: Necessary conditions are given by

$$\frac{\partial L}{\partial x_k} = 0 \quad \text{with} \quad L(x_k; \alpha, \beta) = \sum_k x_k \ln(x_k) + \alpha \left(\sum_k x_k - 1\right) + \beta \left(\sum_k k \cdot x_k - b\right)$$

 $\Leftrightarrow \ln(x_k) + 1 + \alpha + k \beta = 0$ for all k
Solution using Lagrangian multipliers: Necessary conditions are given by

$$\frac{\partial L}{\partial x_k} = 0 \quad \text{with} \quad L(x_k; \alpha, \beta) = \sum_k x_k \ln(x_k) + \alpha \left(\sum_k x_k - 1\right) + \beta \left(\sum_k k \cdot x_k - b\right)$$

 $\Leftrightarrow \ln(x_k) + 1 + \alpha + k \beta = 0$ for all k

$$= \sum_{k} x_{k} = \frac{1}{Z} e^{-k\beta} \text{ with } Z = \sum_{k} e^{-k\beta}$$

Solution using Lagrangian multipliers: Necessary conditions are given by

$$\frac{\partial L}{\partial x_k} = 0 \quad \text{with} \quad L(x_k; \alpha, \beta) = \sum_k x_k \ln(x_k) + \alpha \left(\sum_k x_k - 1\right) + \beta \left(\sum_k k \cdot x_k - b\right)$$

 $\Leftrightarrow \ln(x_k) + 1 + \alpha + k \beta = 0$ for all k

$$= \sum_{k} x_{k} = \frac{1}{Z} e^{-k\beta} \text{ with } Z = \sum_{k} e^{-k\beta}$$

Analogy to statistical physics! There, $\beta = \frac{1}{k_B \cdot T}$

Solution using Lagrangian multipliers: Necessary conditions are given by

$$\frac{\partial L}{\partial x_k} = 0 \quad \text{with} \quad L(x_k; \alpha, \beta) = \sum_k x_k \ln(x_k) + \alpha \left(\sum_k x_k - 1\right) + \beta \left(\sum_k k \cdot x_k - b\right)$$

 $\Leftrightarrow \ln(x_k) + 1 + \alpha + k \beta = 0$ for all k

$$= \sum_{k} x_{k} = \frac{1}{Z} e^{-k\beta} \text{ with } Z = \sum_{k} e^{-k\beta}$$

Analogy to statistical physics! There, $\beta = \frac{1}{k_B \cdot T}$

Calculation of
$$\beta$$
: $-\frac{1}{Z}\frac{\partial Z}{\partial \beta} = b \iff \beta = \ln \frac{b+1}{b}$

Solution using Lagrangian multipliers: Necessary conditions are given by

$$\frac{\partial L}{\partial x_k} = 0 \quad \text{with} \quad L(x_k; \alpha, \beta) = \sum_k x_k \ln(x_k) + \alpha \left(\sum_k x_k - 1\right) + \beta \left(\sum_k k \cdot x_k - b\right)$$

 $\Leftrightarrow \ln(x_k) + 1 + \alpha + k \beta = 0$ for all k

$$= \sum_{k} x_{k} = \frac{1}{Z} e^{-k\beta} \text{ with } Z = \sum_{k} e^{-k\beta}$$

Analogy to statistical physics! There, $\beta = \frac{1}{k_B \cdot T}$

Calculation of
$$\beta$$
: $-\frac{1}{Z}\frac{\partial Z}{\partial \beta} = b \iff \beta = \ln \frac{b+1}{b}$

Maximal entropy in equilibrium: $S_{max} = (b+1)\ln(b+1) - b\ln b$

DPE1 is entropy driven

Experiments with Martin Steup, University of Potsdam

method: capillary electrophoresis

 β is a generalisation of the equilibrium constant for polydisperse mixtures

(Kartal et al, 2011, Mol Syst Biol)

The dynamics of DPE1

Two time scales!

The dynamics of DPE1

•

Theory is also confirmed by DPE2

DPE2 vs DPE1

- transfers single glucosyl residues
- G2 only used as donor
- G3 only used as acceptor

<u>Generic reaction catalysed:</u>

 $G_n + G_1 \longleftarrow G_{n-1} + G_2$

Entropic principle: $S = -\sum_{k} x_{k} \ln x_{k} \rightarrow \max$ with one additional side constraint $x_{1} + x_{2} = m = \text{const.} \quad \left(\text{and} \sum x_{k} = 1; \sum k \cdot x_{k} = b \right)$

Generalisation to non-zero enthalpy changes

Prediction: Similar pattern as for DPE2

Experimentally confirmed.

(Kartal et al, Supp to MSB 2011; Ebenhöh et al, Proc 5th ESCEC 2013)

What is the role of the SHG pool?

Two 'entropic' enzymes mediate the turnover of a polydisperse pool

What is the advantage over other hypothetical systems?

What is the role of the SHG pool?

Polydisperse SHG pools increases robustness in vivo

Replacing DPE2 by MalQ

Simulating MalQ in vitro kinetics

In vitro system: MalQ + HXK Incubation with G_2 only! $G_n+G_m \dashrightarrow G_{n-q}+G_{m+q}$ (maltose never acts as acceptor) $G_1 \dashrightarrow \emptyset$ should not work...

5

0

10

time, min

15

20

25

A generalised ping-pong:

 $G_n + E_k \longrightarrow G_{n-q} + E_{k+q}$ donor half-reaction $G_n + E_k \longrightarrow G_{n+a} + E_{k-a}$ acceptor half-reaction 1 experiment produced glucose (normalised) simulation 0.8 0.6 0.4 0.2

delayed start presumably due to enzyme-bound glucose residues

Ruzanski et al, JBC 2013

Moderate growth phenotype

(Julia Smirnova, PhD thesis; Ruzanski et al, JBC 2013)

complemented plants grow OK!

Maltose turnover

Where else do find entropic enzymes?

...for example

Maltosyltransferases in Streptomyces

"Acceptor specificity" can be explained by entropic principles

Where else do find entropic enzymes?

Where else do find entropic enzymes?

Calvin cycle energetics

TABLE IV

FREE ENERGY CHANGES OF THE PENTOSE PHOSPHATE CYCLES IN C. pyrenoidosa

Reaction	$\Delta G'$ (kcal)	ΔG^{s} (kcal)	
Reductive cycle	and an and the Walter and the second s		
(A) CO_2 + Ribul-1,5- P_2^{4-} + $H_2O \rightarrow 2$ 3- P -glycerate ³⁻ + 2 H ⁺ (B) H ⁺ + 3- P -glycerate ³⁻ + ATP ⁴⁻ + NADPH	-8.4	-9.8 R	
$\rightarrow ADP^{3-} + glyceraldehyde - 3 - P^{2-} + NADP^{+} + P_1^{2-}$	+4.3	-1.6	
(C) Glyceraldehyde-3- $P^{2-} \rightarrow dihydroxyacetone-P^{2-}$	— I.8	-0.2	lso
(D) Glyceraldehyde-3- P^{2-} + dihydroxyacetone- $P^{2-} \rightarrow$ Fru-1,6- P_{2}^{4-}	-5.2	-0.4	Ald
(E) $Fru_{1,6}P_{2}^{4-} + H_{2}O \rightarrow Fru_{6}P^{2-} + P_{1}^{2-}$	-3.4	-6.5 R	
(F) Fru-6- P^{2-} + glyceraldehyde-3- P^{2-} \rightarrow Ery-4- P^{2-} + Xyl-5- P^{2-}	+1.5	-0.9	ТК
(G) Ery-4- P^{2-} + dihydroxyacetone- $P^{2-} \rightarrow$ Sed-1,7- P_2^{4-}	- 5.6	-0.2	
(H) Sed-1,7- P_2^{4-} + H ₂ O \rightarrow Sed-7- P^{2-} + P ₁ ²⁻	-3.4	-7.1 R	ΑΙά
(I) Sed-7- P^{2-} + glyceraldehyde-3- P^{2-} \rightarrow Rib-5- P^{2-} + Xyl-5- P^{2-}	+0.1	-1.4	тк
(J) Rib-5- $P^{2-} \rightarrow \text{Ribul-5-}P^{2-}$	+0.5	0.1	
(K) $Xyl-5-P^{2-} \rightarrow Ribul-5-P^{2-}$	+0.2	- O. I	
(L) Ribul-5- P^{2-} + ATP ⁴⁻ \rightarrow Ribul-1,5- P_2^{4-} + ADP ³⁻ + H ⁺	-5.2	-3.8 R'	130
(M) Fru-6- $P^{2-} \rightarrow \text{Glc-6-}P^{2-}$	-0.5	-0.3	Iso
(N) Glc-6- P^{2-} + H ₂ O $\rightarrow \alpha$ -D-Glc + P _i ²⁻	- 3.3	$(-7.2)^{*}$	130

(Bassham and Krause, BBA 1969)

All 'close to equilibrium' reactions shuffle

Food for thoughts

It appears that metabolism is organised as an interplay of 'entropic' and 'energetic' enzymes

- Why?
- Are there principles behind this organisation?
- How is this connected to resource allocation?

Theoretical advances

$$T\Sigma = -\frac{\mathrm{d}}{\mathrm{d}t} \bigg[\mathcal{H} - TS - RTC \ln \frac{C}{C^{\mathrm{eq}}} - RT \big(C^{\mathrm{eq}} - C \big) \bigg] \ge 0.$$

Can we use in vitro polymer biochemistry systems to verify novel results from theoretical physics??

Outlook: Towards synthetic starch

Many different processes play together!

- starch synthases
- branching enzymes
- phosphorylases
- isoamylases

www.nobelprize.org

Richard Feynman:

"What I cannot create, I do not understand!"

www.nobelprize.org

Richard Feynman:

"What I cannot create, I do not understand!"

Preliminary work: expressing starch-like polymers in yeast

The branching pattern matters!

Sam Zeeman, ETH Zurich

Pglucose		───→ Chain elongation		Branching		Deb	oranching !
	5 i	so-enzymes	2+ iso-enz	ymes	3 iso-enzyı	nes	
	Ρ	lants					
	SS1 SS2 SS3 SS4 GBS3	Synthesis of short chains Elongation of intermediate chains Synthesis of long cluster-spanning chair Granule initiation and shape S Amylose synthesis within the granule	15	000		S	À

Debranching enzymes are critical for making branched glucans!

Preliminary work: expressing starch-like polymers in yeast

STARCH IN YEAST?

Barbara Pfister, ETH Zurich

- Delete all 7 glycogen biosynthesis genes
- Progressively add Arabidopsis genes
- All lines express AGPase and both BE isoforms
- Variable combinations of starch synthases with the presence/absence of ISA

lodine-stained galactose plate

Sam Zeeman, ETH Zurich

Acknowledgements

Collaborators:

- Potsdam: Martin Steup Sebastian Mahlow Julia Smirnova
- Norwich: Alison Smith Rob Field
- Zurich: Önder Kartal Sam Zeeman Barbara Pfister
- Luxemburg: Alexander Skupin

https://qtb.hhu.de

Financial Support

Bundesministerium für Bildung und Forschung

The adsorption equilibrium

Desorption rate: $r_d \propto \theta_E$

The adsorption equilibrium

Polydisperse mixtures as statistical ensembles

X_i : molar fraction of glucans with length *i* corresponds to occupation number of state *i*

The distribution $|X_i|$ fully characterises the polydisperse reactant mixture

The entropy of the statistical ensemble is $S = -\sum x_k \ln x_k$

Equilibrium is determined by maximal entropy:

$$S = -\sum x_k \ln x_k \rightarrow \max!$$

Maximum entropy principle under constraint that #bonds and #molecules is conserved!

conservation of #molecules:

conservation of #bonds:

$$\sum x_k = 1$$

$$\sum k \cdot x_k = b$$

determined by initially applied mixture of maltodextrins

Maltose turnover

