
M4453: Introduction to Molecular Systems Biotechnology

Learning Python Supporting Material - I

02-06.10.2015

1 Datatypes

Python has several native datatypes, the most important that we encountered are:

� Booleans: they have the values True or False and are the result of logic operations

� Numbers: can be integers (23) or floats (23.7)

� Strings: sequences of Unicode characters like ’Hello World’

� Lists: sequences of values (booleans, numbers, strings. . .)

� Tuples: immutable sequences of values

� Dictionaries: collection of key-value pairs

Important: if you divide two integers you will get an integer! Try in the Python console:

>>> 5/3
1
>>> 5 .0/3
1.6666666666666667

Try also the other operators we used:

>>> 5 >= 3
True
>>> 5 == 3
False
>>> 8%2
0
>>> 8%3
2
>>> 8%4
0
>>> 2**3
8
>>> 5//3
1
>>> 6//3
2

Remember: comparison operators are particularly important! Is equal (==), is different (!=), is higher (>), is
lower (<), is higher or equal (>=), is lower or equal (<=). The logical operators and and or are used to combine
conditions:

>>> 4 > 2 and 3 <6
True
>>> 4 > 2 and 3 < 2

1

False
>>> 4 > 2 or 3 < 2
True

Let’s now work on a dictionary containing the ages of some persons:

>>> ages = { 'Mary ' : 5 3 , ' July ' : 1 9 , 'Mark ' : 9 , 'Bob ' : 2 2 , ' J i l l ' : 3 6 , ' Patty ' : 6 8 , ' Peter
' : 2 5 , 'Max ' : 7 6 , ' Fabr ice ' : 1 2 , ' Marianne ' : 15}

>>> ages [' Patty ']
68

2 Control Structures

We started with Python doing plain operations (function calling, variable assignment. . .) that are executed line by
line, in a consequent order, by the interpreter. Can we have more control on the flow of the program we write?
The answer is luckily yes: there are special ”commands”, called control structures, that allow you to make your
code ”dynamic”.

2.1 if/else condition

The if/else structure is used when you want to test a particular True/False condition. A boolean can be the result
of some logical operation. Execute now file ages.py or copy its content in the shell:

' ' ' @author : a n t o n e l l a ' ' '

i f ages [' Patty '] < 13 :
print ' Patty i s a c h i l d '

e l i f ages [' Patty '] < 18 :
print ' Patty i s a teenager '

else :
print ' Patty i s an adul t '

>>> execf i le (' ages . py ')
Patty i s an adult

The else clause is not mandatory: can you tell what happens in the example above removing the else condition?

2.2 for loops

You will often need to repeat some operations on, e.g., all the elements of a list. For loops are easily defined through
an index that goes over a set of values. We will now use the keys method of a dictionary to obtain a list of the
names of our dictionary:

>>> ages . keys ()
[' Fabr ice ' , ' J i l l ' , ' Peter ' , ' Marianne ' , 'Bob ' , 'Max ' , ' July ' , ' Patty ' , 'Mary ' , '

Mark ']

and will now put our previous if conditions in a loop over the content of the dictionary (file loopages.py):

' ' ' @author : a n t o n e l l a ' ' '

for k in ages . keys () :
i f ages [k] < 13 :

print k , ' i s a c h i l d '

e l i f ages [k] < 18 :
print k , ' i s a teenager '

else :
print k , ' i s an adul t '

2

>>> execf i le (' l oopages . py ')
Fabr ice i s a c h i l d
J i l l i s an adult
Peter i s an adult
Marianne i s a teenager
Bob i s an adult
Max i s an adult
July i s an adult
Patty i s an adult
Mary i s an adult
Mark i s a c h i l d

2.3 while loops

A while loop defines a set of instructions that are repeated until a certain condition is met. We can e.g. replicate
the previous for loop as (file loopages2.py):

' ' ' @author : a n t o n e l l a ' ' '

akeys = ages . keys ()
i = 0
while i < len (akeys) :

k = akeys [i]
i f ages [k] < 13 :

print k , ' i s a c h i l d '

e l i f ages [k] < 18 :
print k , ' i s a teenager '

else :
print k , ' i s an adul t '

i += 1

>>> execf i le (' l oopages2 . py ')
Fabr ice i s a c h i l d
J i l l i s an adult
Peter i s an adult
Marianne i s a teenager
Bob i s an adult
Max i s an adult
July i s an adult
Patty i s an adult
Mary i s an adult
Mark i s a c h i l d

This is, of course, a very bad example! Why use more lines of code when you could simply define a for loop?
There might be cases, anyway, when you will have to do something similar, so keep it in mind, and remember that
at the end it’s always your choice and your style, and as long as it works, it’s ok!

Here we show another while loop example, a bit more meaningful (file sumages.py):

' ' ' @author : a n t o n e l l a ' ' '

akeys = ages . keys ()
i = 0
asum = 0
while asum < 100 :

asum += ages [akeys [i]]
i += 1
i f i >= len (akeys) :

print ' index out o f scope ! '

3

break
print asum

>>> execf i le (' sumages . py ')
110

Do you understand what is happening here? Do you remember what break is for?
Finally, remember that a loop like

while(TRUE){print("Hello world!")}

will go on forever! This happens if e.g. you forget to increment the i counter in the loopages2.py while loop! Be
careful, anyway you can always stop any process in the shell by pressing CTRL+C.

3 Functions

Functions are a very convenient way to reuse code. Let’s say you have to compute the average value for numbers
stored in a list. You can either write code lines for every set of data like in fun1.py:

' ' ' @author : a n t o n e l l a ' ' '

n l i s t = ages . va lue s ()
avg = 0 .0
for n in n l i s t :

avg += n
avg = avg/ len (n l i s t)
print avg

>>> execf i le (' fun1 . py ')
33 .5

Or you can define a function with variable arguments and call it several times like in fun2.py with the different
lists as arguments:

' ' ' @author : a n t o n e l l a ' ' '

def getAvg (n l i s t) :
' ' ' f unc t i on to re turn the average o f a l i s t o f numbers ' ' '

avg = 0 .0
for n in n l i s t :

avg += n
avg = avg/ len (n l i s t)
return avg

teens = []
adu l t s = []
k id s = []
a l l p s = ages . va lue s ()

for a in a l l p s :
i f a < 13 :

k id s . append (a)
e l i f a <18:

t eens . append (a)
else :

adu l t s . append (a)

print 'The average age i s ' , getAvg (a l l p s)

4

print 'The average t e enage r s age i s ' , getAvg (teens)
print 'The average adu l t s age i s ' , getAvg (adu l t s)
print 'The average k ids age i s ' , getAvg (k ids)

>>> execf i le (' fun2 . py ')
The average age i s 33 .5
The average t e enage r s age i s 15 .0
The average adu l t s age i s 42.7142857143
The average k ids age i s 10 .5

4 Exercises

� In Section 2.1 we showed an if/else examples. Rewrite the conditions to start checking if the person is an
adult. You should get the same result in the end!

� Write a code that prints out only the numbers between 1 and 20 that are multiple of 3. Tip: the modulo
(integer remainder) operator is %.

� The Fizz Buzz test: Write a program that prints the numbers from 1 to 100. But for multiples of three print
’Fizz’ instead of the number and for the multiples of five print ’Buzz’. For numbers which are multiples of
both three and five print ’FizzBuzz’.

5

	Datatypes
	Control Structures
	if/else condition
	for loops
	while loops

	Functions
	Exercises

