
M4453: Introduction to Molecular Systems Biotechnology

Learning Python Supporting Material - II

02-06.10.2015

1 Python modules for science

Python community is very active and there are a lot of useful packages available to perform scientific stuff. The
most interesting ones for us right now are

� math: contains the definition of standard math functions like square root and exponential

� numpy: fundamental package for scientific computing, contains arrays definition etc.

� scipy: collection of numerical algorithms, needs numpy

� matplotlib: allows to represent your data beautifully - it was built to stand up to matlab graphical standard

You have to import a module, and there are different ways:

>>> import math
>>> math . s q r t (4)
2 .0
>>> import math as m
>>> m. s q r t (4)
2 .0
>>> from math import *

>>> s q r t (4)
2 .0
>>> from math import s q r t
>>> s q r t (4)
2 .0

In the first two cases you are importing the module math (in the second case you are also giving it a shorter
alias), and the functions “stay” in the module so that you will have to call math.sqrt(). In the third case you are
importing directly all the functions from the math module and now you can use them directly. In the fourth case
you are importing only the sqrt function.

Be careful! If you give an alias to a module, then you should remember that this alias is “reserved”, don’t use
it for variable assignment later. If you import functions from modules, be also careful that different modules might
contain functions with the same name, so be careful with from MODULE import *.

2 Write a module and use it

Let’s use the example found on the official python documentation: https://docs.python.org/2/tutorial/

modules.html.

2.1 The Fibonacci sequence

Leonardo Bonacci (1170-1250) is considered to be the most talented Western mathematician of the Middle Ages.
Better known as Fibonacci he was italian and in 1202 published the Liber Abaci, the Book of Calculation, popu-
larizing the HinduArabic numeral system to the Western World. He is known world-wide for the Fibonacci serie of
numbers.

Consider the growth of imaginary rabbit population with the following unrealistic assumptions:

1

https://docs.python.org/2/tutorial/modules.html
https://docs.python.org/2/tutorial/modules.html

� a newly born pair of rabbits, one male, one female, are put in a field

� at the age of one month rabbits are able to mate

� it takes one month to the female to produce another pair of rabbits

� rabbits never die

� a mating pair always produces one new pair every month from the second month on

How many pairs after one year?

2.2 Some math

The mathematical formula that describes a Fibonacci sequence is the recurrence relation:

Fn = Fn−1 + Fn−2

This means that two initial values must be defined for the serie to start. These are called seed values and
depending on the convention can be F0 = 1, F1 = 1 or F0 = 0, F1 = 1. They give rise to the same sequence. In
Table 1 we show the first values of the Fibonacci sequence with the rabbit example explanation.

month rabbit pairs comment

0 0 no rabbits
1 1 a pair is put in the field
2 1 the pair mates
3 2 a second pair is born and

the first pair mates again
4 3 a third pair is born from the

first pair, the second and
first pairs mate

5 5 the first and second pairs
give birth to two new pairs,
now the third pair can also
mate

.

Table 1: Mating rabbits

https://artblot.wordpress.com/2013/05/10/rich-with-fibonacci-gold/

fibonacci-rabbits/

2.3 Some code

Write your fibo module in a file called fibo.py:

Fibonacci numbers module
The f i l e name i s the module name !
MYMODULE. py −−−> import MYMODULE
@author : an t one l l a

def f i b (n) :
' ' ' pr in t out Fibonacc i s e r i e s up to n , f 0 = 0 , f 1 = 1 ' ' '

a , b = 0 , 1
while b < n :

print a ,
a , b = b , a+b

print a

def f i b 2 (n) :
' ' ' r e tu rn s a l i s t o f F ibonacc i s e r i e s up to n , f 0 = 0 , f 1 = 1 ' ' '

2

https://artblot.wordpress.com/2013/05/10/rich-with-fibonacci-gold/fibonacci-rabbits/
https://artblot.wordpress.com/2013/05/10/rich-with-fibonacci-gold/fibonacci-rabbits/

a , b = 0 , 1
r e s u l t = [a]
while b < n :

r e s u l t . append (b)
a , b = b , a+b

return r e s u l t

def f i b 3 (n , f 0 =0, f 1 =1) :
' ' ' r e tu rn s a l i s t o f F ibonacc i s e r i e s up to n , s eeds de f ined by user , d e f a u l t s

are f 0 = 0 , f 1 = 1 ' ' '

a , b = f0 , f 1
r e s u l t = [a]
while b < n :

r e s u l t . append (b)
a , b = b , a+b

return r e s u l t

And now use it in a new file like usefibo.py:

@author : an t one l l a

import f i b o

print ”Let ' s t ry the f i b func t i on ”
f i b o . f i b (1000)

print ”Let ' s t ry the f i b 2 func t i on ”
f= f i b o . f i b 2 (100)
print f

print ”Let ' s t ry the f i b 3 func t i on with one only argument”
f= f i b o . f i b 3 (100)
print f

print ”Let ' s t ry the f i b 3 func t i on with d i f f e r e n t seeds ”
f= f i b o . f i b 3 (100 , 1 , 1)
print f

3 Integrate differential equations

The logistic equation is commonly used in ecology to model population growth and was first introduced by Pierre-
Francois Verhulst in 1838. The variation in population Y over time t is here described by the differential equation:

dY

dt
= r · Y

(
1 − Y

k

)
.

The parameter r gives the “unimpeded” growth rate, while K introduces the carryng capacity of the system.
In the file intlogistic.py we see how to solve this differential equation:

' ' ' @author : a n t o n e l l a ' ' '

import s c ipy . i n t e g r a t e as s c i i n t
import matp lo t l i b . pyplot as p l t

def logGrowth (y , t0 , r , k) :
' ' ' r e tu rn s the v a r i a t i o n in populat ion y ' ' '

3

dY = r *y [0]*(1 −y [0] / f loat (k))
return [dY]

#params conta ins the va l u e s t ha t we have to pass to the func t i on to be i n t e g r a t e d
#in our case i t ' s the r and k parameters
params = (0 . 2 , 4 0)

#s t a r t i n g popu la t i on
y = [0 . 0 1]

#time range over which we want to i n t e g r a t e
time = range (0 ,100)

#the i n t e g r a t i o n s t ep : we pass the funct ion , the s t a r t i n g popu la t ion , the time
range and the a d d i t i o n a l parameters

growth = s c i i n t . ode int (logGrowth , y , time , args=params)

#p l o t i t !
f i g = p l t . f i g u r e ()
p l t . p l o t (time , growth)
p l t . show ()
f i g . s a v e f i g (' l o g i s t i c g r o w t h . png ')

Figure 1: Example of logistic growth

4 Exercises

� Play with the intlogistic.py script. Make the plot look nicer adding a title, axes labels etc.

� Change parameters for the equation in intlogistic.py and modify the title in the plot and the name of
the saved figure accordingly in order to distinguish the different figures. Tip: use the string composition like
title = ’Logistic growth with k=%.1f’ % (params[1])

� During the class we implemented the discrete logistic growth. Modify the code in intlogistic.py to add the
discrete logistic curve to the plot. Use legends!

4

	Python modules for science
	Write a module and use it
	The Fibonacci sequence
	Some math
	Some code

	Integrate differential equations
	Exercises

