/\ ALTAIR

Altair PBS Professional 2020.1.1

User's Guide

altair.com

You are reading the Altair PBS Professional 2020.1.1
User’s Guide (UG)
Updated 9/30/20

Copyright © 2003-2020 Altair Engineering, Inc. All rights reserved.

ALTAIR ENGINEERING INC. Proprietary and Confidential. Contains Trade Secret Information. Not for use or disclo-
sure outside of Licensee’s organization. The software and information contained herein may only be used internally and
are provided on a non-exclusive, non-transferable basis. Licensee may not sublicense, sell, lend, assign, rent, distribute,
publicly display or publicly perform the software or other information provided herein, nor is Licensee permitted to
decompile, reverse engineer, or disassemble the software. Usage of the software and other information provided by Altair
(or its resellers) is only as explicitly stated in the applicable end user license agreement between Altair and Licensee. In
the absence of such agreement, the Altair standard end user license agreement terms shall govern.

Use of Altair’s trademarks, including but not limited to “PBS™”, “PBS Professional®”, and “PBS Pro™”, “PBS
Works™” “PBS Control™”, “PBS Access™”, “PBS Analytics™”, “PBScloud.io™”, and Altair’s logos is subject to
Altair's trademark licensing policies. For additional information, please contact Legal@altair.com and use the wording
“PBS Trademarks” in the subject line.

For a copy of the end user license agreement(s), log in to https://secure.altair.com/UserArea/agreement.html or contact
the Altair Legal Department. For information on the terms and conditions governing third party codes included in the
Altair Software, please see the Release Notes.

This document is proprietary information of Altair Engineering, Inc.

Contact Us

For the most recent information, go to the PBS Works website, www.pbsworks.com, select "My PBS", and log in with
your site ID and password.

Altair

Altair Engineering, Inc., 1820 E. Big Beaver Road, Troy, MI 48083-2031 USA www.pbsworks.com

Sales
pbssales@altair.com 248.614.2400

Please send any questions or suggestions for improvements to agu@altair.com.

https://secure.altair.com/UserArea/agreement.html
http://www.pbsworks.com
http://www.pbsworks.com

Technical Support

Need technical support? We are available from 8am to 5pm local times:

Location Telephone e-mail
Australia +1 800 174 396 anz-pbssupport@india.altair.com
China +86 (0)21 6117 1666 pbs@altair.com.cn
France +33 (0)1 4133 0992 pbssupport@europe.altair.com
Germany +49 (0)7031 6208 22 pbssupport@europe.altair.com
India +91 80 66 29 4500 pbs-support@india.altair.com

+1 800 208 9234 (Toll Free)
Italy +39 800 905595 pbssupport@europe.altair.com
Japan +81 3 6225 5821 pbs@altairjp.co.jp
Korea +82 70 4050 9200 support@altair.co.kr
Malaysia +91 80 66 29 4500 pbs-support@india.altair.com
+1 800 425 0234 (Toll Free)
North America +1 248 614 2425 pbssupport@altair.com
Russia +49 7031 6208 22 pbssupport@europe.altair.com
Scandinavia +46 (0)46 460 2828 pbssupport@europe.altair.com
Singapore +91 80 66 29 4500 pbs-support@india.altair.com
+1 800 425 0234 (Toll Free)
South Africa +2721 831 1500 pbssupport@europe.altair.com
South America +55 11 3884 0414 br_support@altair.com
UK +44 (0)1926 468 600 pbssupport@ecurope.altair.com

Contents

About PBS Documentation X
1 Getting Started with PBS 1
1.1 Why Use PBS? . . o 1
1.2 PBS Tasks and Components 1
1.3 Interfaces t0 PBS 3
1.4 Setting Up Your Environment 5
2 Submitting a PBS Job 11
2.1 Introduction to the PBS Job. 11
2.2 The PBS Job Script. . ..o 14
2.3 Submitting @ PBS Job 18
2.4 Job Submission Recommendations and Advice. 23
2.5 Job Submission Options e 24
2.6 Job Submission Caveats. 30
3 Job Input & Output Files 31
3.1 Introductionto Job File /O In PBS 31
3.2 Input/Output File Staging. 31
3.3 Managing Output and Error Files 39
4 Allocating Resources & Placing Jobs 49
4.1 What is @ VNode? 49
4.2 PBS RESOUICES. . . .t e 49
4.3 Requesting ReSOUrCes 51
4.4 How Resources are Allocated to Jobs 59
4.5 Limits on Resource UsSagettt 61
4.6 Viewing ReSOUICESo 63
4.7 Specifying Job Placement. 64
4.8 Backward Compatibility. 70
5 Multiprocessor Jobs 77
51 Submitting Multiprocessor Jobs 77
5.2 Using MPIL with PBS 81
5.3 Using PVM with PBS. 102
54 Using OpenMP with PBS 103
5.5 Hybrid MPI-OpenMP Jobs. e 105

PBS Professional 2020.1.1 User’ s Guide

UG-v

Contents

6 Controlling How Your Job Runs

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17

UsingJob ExitStatus
Using Job Dependencies
Adjusting Job Running Time
Using Checkpointing
Holding and ReleasingJobs
Allowing Your Jobtobe Re-run.
Controlling Number of Times Job is Re-run
Deferring Execution.
Setting Priority for YourJob
Making gsub Wait UntilJobEnds.
Running Your Job Interactively
Using Environment Variables
Specifying Which Jobs to Preempt
Releasing Unneeded Vnodes from Your Job
Running Your Job ina Container
Running YourJobintheCloud..................
Allowing Your Job to Tolerate Vnode Failures

7 Reserving Resources

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11

Glossary
Quick Explanation of Reservations for Jobs
Prerequisites for Reserving Resources.
Advance and Standing Reservations
Job-specific Reservations
Getting Confirmation of a Reservation
Modifying Reservations.
Deleting Reservations.
Viewing the Status of a Reservation..............
Submitting a Job to a Reservation
Reservation Caveatsand Errors.

8 Job Arrays

8.1
8.2
8.3
8.4
8.5
8.6
8.7

Advantages of Job Arrays.
Glossary
Descriptionof JobArrays
SubmittingaJob Array
Viewing StatusofaJob Array.
Using PBS Commands with Job Arrays
JobArrayCaveats.

9 Working with PBS Jobs

9.1
9.2
9.3
9.4
9.5
9.6
9.7

UG-vi

UsingJob History
Modifying Job Attributes
DeletingJobs.
Sending Messagestodobs.
Sending SignalstoJobs
Changing Orderof Jobs
Moving Jobs Between Queues

PBS Professional 2020.1.1 User’s Guide

Contents

10 Checking Job & System Status 171
10.1 Checking Job Status 171
10.2 Checking Server Status. 183
10.3 Checking Queue Status 184
10.4 Full Display Options for Job, Queue, and Server Status. 186
10.5 Selectinga List of JObS 187
10.6 Checking License Availability 189

11 Submitting Cray Jobs 191
111 PBSJobson Cray Shasta. 191
11.2 PBSJobsonthe Cray XC. 191
11.3 Resources for Cray XC 191
11.4 Rules for Submitting Jobsonthe Cray XC 192
11.5 Techniques for Submitting Cray XC Jobs 193
11.6 Using Xeon PhiVnodes on Cray XC. e 195
11.7 Using Hyperthreads on Cray XC. e e 195
11.8 Viewing Cray XC Job Information 196
11.9 Caveats and Advice for Cray XC. 197
11.10 Errors and Logging on Cray XC 199

12 Using Provisioning 201
12,1 DefinitioNs . . . o 201
12.2 How Provisioning WorKs 201
12.3 Requirements and Restrictions. 202
12.4 Using Provisioning. 204
125 Caveats and Ermorso 205

13 Using Accounting 207
131 USINg ACCOUNTING .« o ottt e e e e e e 207

Index 209

PBS Professional 2020.1.1 User’ s Guide UG-vii

Contents

UG-viii PBS Professional 2020.1.1 User’ s Guide

About PBS Documentation

The PBS Professional guides and release notes apply to the commercial releases of PBS Professional.

Document Conventions

Abbreviation

The shortest acceptable abbreviation of a command or subcommand is underlined
Attribute

Attributes, parameters, objects, variable names, resources, types
Command

Commands such as gmgr and scp
Definition

Terms being defined
File name

File and path names
Input

Command-line instructions
Method

Method or member of a class
Output

Output, example code, or file contents
Syntax

Syntax, template, synopsis
Utility

Name of utility, such as a program
Value

Keywords, instances, states, values, labels

Notation

Optional arguments are enclosed in square brackets. For example:
gstat [-E]

Variables are enclosed in angle brackets. A variable is something the user must fill in with the correct value. In the fol-
lowing example, the user replaces vnode name with the name of the vnode:

pbsnodes -v <vnode name>

PBS Professional 2020.1.1 User’ s Guide UG-ix

About PBS Documentation

Optional variables are enclosed in angle brackets inside square brackets. For example:
gstat [<job ID>]

Literal terms appear exactly as they should be used. For example, to get the version of the gstat command, type the
following exactly:

gstat --version
Multiple alternative choices are enclosed in curly braces. For example, if you can use either “-n” or “--name””:

{-n | --name}

List of PBS Professional Documentation

The PBS Professional guides and release notes apply to the commercial releases of PBS Professional.
PBS Professional Release Notes

Supported platforms, what’s new and/or unexpected in this release, deprecations and interface changes, open and
closed bugs, late-breaking information. For administrators and job submitters.

PBS Professional Big Book

All your favorite PBS guides in one place: Installation & Upgrade, Administrator's, Hooks, Reference, User's, and
Programmer s guides in a single book.

PBS Professional Installation & Upgrade Guide

How to install and upgrade PBS Professional. For the administrator.
PBS Professional Administrator's Guide

How to configure and manage PBS Professional. For the PBS administrator.
PBS Professional Hooks Guide

How to write and use hooks for PBS Professional. For the PBS administrator.
PBS Professional Reference Guide

Covers PBS reference material.
PBS Professional Users Guide

How to submit, monitor, track, delete, and manipulate jobs. For the job submitter.
PBS Professional Programmer s Guide

Discusses the PBS application programming interface (API). For integrators.
PBS Professional Manual Pages

PBS commands, resources, attributes, APIs.
PBS Professional Licensing Guide

How to configure licensing for PBS Professional. For the PBS administrator.
PBS Professional Cloud Guide

How to configure and use the PBS Professional Cloud feature.
PBS Professional Budget Guide

How to configure and use the PBS Professional Budget feature.
PBS Professional Simulate Guide

How to configure and use the PBS Professional Simulate feature.

UG-x PBS Professional 2020.1.1 User’ s Guide

Chapter 2

Where to Keep the Documentation

To make cross-references work, put all of the PBS guides in the same directory.

Ordering Software and Licenses

To purchase software packages or additional software licenses, contact your Altair sales representative at
pbssales@altair.com.

PBS Professional 2020.1.1 User’ s Guide UG-xi

Chapter 2

UG-xii PBS Professional 2020.1.1 User’ s Guide

1
Getting Started with PBS

11 Why Use PBS?

PBS frees you from the mechanics of getting your work done; you don’t need to shepherd each job to the right machine,
get input and output copied back and forth, or wait until a particular machine is available. You need only specify require-
ments for the tasks you want executed, and hand the tasks off to PBS. PBS holds each task until a slot opens up, then
takes care of copying input files to the execution directory, executing the task, and returning the output to you.

PBS keeps track of which hardware is available, and all waiting and running tasks. PBS matches the requirements of
each of your tasks to the right hardware and time slot, and makes sure that tasks are run according to the site’s policy.
PBS also maximizes usage and throughput.

1.2 PBS Tasks and Components

1.2.1 PBS Tasks

PBS is a distributed workload management system. PBS manages and monitors the computational workload for one or
more computers. PBS does the following:

Queuing jobs

PBS collects jobs (work or tasks) to be run on one or more computers. Users submit jobs to PBS, where they are
queued up until PBS is ready to run them.

Scheduling jobs

PBS selects which jobs to run, and when and where to run them, according to the resources requested by the job,
and the policy specified by the site administrator. PBS allows the administrator to prioritize jobs and allocate
resources in a wide variety of ways, to maximize efficiency and/or throughput.

Monitoring jobs

PBS tracks system resources, enforces usage policy, and reports usage. PBS tracks job completion, ensuring
that jobs run despite system outages.

PBS Professional 2020.1.1 User’ s Guide UG-1

Chapter 1 Getting Started with PBS

1.2.2 PBS Components

PBS consists of a set of commands and system daemons/services, shown here:

PBS
Commands
Server
Batch . MoM
4 Jobs
Y
Scheduler

Figure 1-1: Jobs are submitted to the PBS server. The scheduler chooses where and when to run the
jobs, and the server sends the jobs to MoM. PBS commands communicate with the server.

The server, scheduler, and communication daemons run on the server host. A machine that executes jobs is called an
execution host. Each execution host runs a MoM daemon. The server host can run a MoM daemon. One server man-
ages any number of MoM daemons. Commands can be run from the server host, execution hosts, and command-only cli-
ent hosts. The server/scheduler/communication host, the execution hosts, and the client hosts are called a PBS complex.

Commands

PBS provides a set of commands that you can use to submit, monitor, alter, and delete jobs. The PBS com-
mands can be installed on any supported platform, with or without the other PBS components.

Some PBS commands can be run by any PBS user, while some require administrator or operator privilege.
Some commands provide extended features for administrators and operators.

Job

A PBS job is a task, in the form of a shell script, cmd batch file, Python script, etc. describing the commands
and/or applications you want to run. You hand your task off to PBS, where it becomes a PBS job.

Server

The PBS server manages jobs for the PBS complex. PBS commands talk to the PBS server, jobs are submitted
to the server, and the server queues the jobs and sends them to execution hosts.

Scheduler

The scheduler runs jobs according to the policy specified by the site administrator. The scheduler matches each
job’s requirements with available resources, and prioritizes jobs and allocates resources according to policy.

MoM

MoM manages jobs once they are sent to the execution host. One MoM manages the jobs on each execution
host. MoM stages files in, runs any prologue, starts each job, monitors the job, stages files out and returns out-

put to the job submitter, runs any epilogue, and cleans up after the job. MoM can also run any execution host
hooks.

MoM creates a new session that is as identical to your login session as is possible. For example, under Linux, if
the job submitter’s login shell is csh, then MoM creates a session in which . login is run as well as .cshrc.

MoM is a reverse-engineered acronym that stands for Machine-oriented Mini-server.

UG-2 PBS Professional 2020.1.1 User’ s Guide

Getting Started with PBS Chapter 1

1.3 Interfaces to PBS

PBS provides a command-line interface, and Altair offers a web-based front end to PBS called Access, which is a sepa-
rate product. This document describes the PBS command-line interface. For information on Access, see
www . pbsworks .com.

1.3.1 PBS Commands

PBS provides a set of commands that allow you to submit, monitor, and manage your jobs. Some PBS commands can be
used by any PBS user; some can be used only by administrators, and some have different behavior depending on the role
of the person invoking them. In this document, we describe the commands that can be used by any PBS user. For a com-
plete description of all commands and their requirements, see “Requirements for Commands” on page 21 of the PBS Pro-
fessional Reference Guide.

Table 1-1: PBS Professional User Commands

PBS User Commands
Command Purpose
pbs login Cache your password
pbs_ rdel Delete a reservation
pbs_rstat Status a reservation
pbs_python Python interpreter
pbs_ rsub Submit a reservation
pbsdsh PBS distributed shell
galter Alter job
gdel Delete job
ghold Hold a job
gmove Move job
gmsg Send message to job
gorder Reorder jobs
grls Release hold on job
gselect Select jobs by criteria
gsig Send signal to job
gstat Status job, queue, server
gsub Submit a job
tracejob Report job history

PBS Professional 2020.1.1 User’ s Guide uG-3

Chapter 1

Getting Started with PBS

We also list the PBS administrator commands here:

Table 1-2: PBS Administrator Commands

PBS Administrator Commands
Command Purpose
pbs-report Report job statistics
pbs_hostn Report host name(s)
pbs_probe PBS diagnostic tool
pbs_tclsh TCL with PBS API
pbsfs Show fairshare usage
pbsnodes Manage vnodes
printjob Report job details
gdisable Disable a queue
genable Enable a queue
gqmgr Manager interface
grerun Requeue running job
grun Manually start a job
gstart Start a queue
gstop Stop a queue
gterm Shutdown PBS

UuG-4

PBS Professional 2020.1.1 User’s Guide

Getting Started with PBS Chapter 1

1.4 Setting Up Your Environment

1.4.1 Prerequisites for Account

Your account must have the following characteristics for PBS to work correctly:
e Account must have access to all PBS hosts
e Account must have valid username and group on all execution hosts and on the server

* Account must be able to transfer files between hosts using the file transfer mechanism chosen by the administrator.
This is described in section 14.6, "Setting File Transfer Mechanism", on page 549 of the PBS Professional Adminis-
trator’s Guide.

e The time zone environment variable must be set correctly in order to use advance and standing reservations. See
section 1.4.4, “Setting Time Zone for Submission Host”, on page 9.

e Username must be 256 characters or less in length.
* Your environment must be correctly configured:

e For Linux, see section 1.4.2, “Setting Up Your Linux Environment”, on page 5.

¢ For Windows, see section 1.4.3, “Setting Up Your Windows Environment”, on page 7.

e Account must have correct user authorization to run jobs.

e For Linux, see section 1.4.2.7, “User Authorization Under Linux”, on page 7.

¢ For Windows, see section 1.4.3.4, “User Authorization under Windows”, on page 8

1.4.2 Setting Up Your Linux Environment

1.4.2.1 Set Paths to PBS Commands

PBS commands reside in a directory pointed to by $PBS EXEC/bin. This path may change from one installation of PBS
to the next, so use the variable instead of the absolute path. The location of $PBS_EXEC is given in /etc/pbs.conf.
Make it easy to use PBS commands by doing the following:

1. Inyour .login file, source /etc/pbs.conf:
If you are using bash or sh, do the following:
% . /etc/pbs.conf
If you are using csh, do the following:

%source /etc/pbs.conf

2. Add the path to PBS commands to your PATH environment variable. Use $PBS_EXEC, not the absolute path. For
example, where MY PATH is your existing set of paths:

setenv PATH ${MY PATH}:$PBS EXEC/bin/

1.4.2.2 Set Paths to PBS Man Pages

Add the path to the PBS man pages to your MANPATH environment variable:
setenv MANPATH /usr/man:/usr/local/man:$PBS EXEC/share/man/

PBS Professional 2020.1.1 User’ s Guide UG-5

Chapter 1 Getting Started with PBS

1.4.2.3 Make Login and Logout Files Behave Properly for Jobs

By default, PBS runs your jobs under your login, meaning that your login and logout files are sourced for each job. If
your .cshrc, .login, .profile, or . logout contains commands that attempt to set terminal characteristics or pro-
duce output, such as by writing to stdout, jobs may not run. Make sure that any such command in these files is skipped
when the file is run inside a PBS job. PBS sets the PBS_ENVIRONMENT environment variable inside jobs. Test for
the PBS_ENVIRONMENT environment variable and run commands only when it is not set. For example, ina .login
file:

if (! $?PBS ENVIRONMENT) then
do terminal settings here
run command with output here
endif

1.4.24 Capture Correct Job Exit Status

When a PBS job runs, the exit status of the last command executed in the job is reported by the job’s shell to PBS as the
exit status of the job. The exit status of the job is important for job dependencies and job chaining. Under Linux, the last
command executed might not be the last command in your job, if you have a . Logout on the execution host. In that
case, the last command executed is from the . logout and not from your job. To prevent this, preserve the job’s exit sta-
tus in your . logout file by saving it at the top, then doing an explicit exit at the end, as shown below:

set EXITVAL = S$status
previous contents of .logout here
exit $EXITVAL

Under Windows, you do not need to take special steps to preserve the job’s exit status.

1.4.2.5 Avoid Background Processes Inside Jobs

Make sure that your login file doesn’t run processes in the background when invoked inside a PBS job. If your login file
contains a command that runs in the background inside a PBS job, persistent processes can cause trouble.

1.4.2.6 Provide bash Functions to Jobs

If your jobs need to have exported bash functions available to them, you can put these functions in your .profile or

. login on the execution host(s). You can also use gsub -Vorgsub -v <function name> to forward the func-
tion at job submission. Just make sure that you don’t have a function with the same name as an environment variable if
you use -v or -V. See section 6.12.4, “Forwarding Exported Shell Functions”, on page 127.

UG-6 PBS Professional 2020.1.1 User’ s Guide

Getting Started with PBS Chapter 1

1.4.2.7 User Authorization Under Linux

The server’s flatuid attribute determines whether it assumes that identical user names mean identical users. If True, it
assumes that if UserS exists on both the submission host and the server host, then UserS can run jobs on that server. If
not True, the server calls ruserok () which uses /etc/hosts.equiv or .rhosts to authorize UserS to run as
UserS. In this case, the username you specify with the -u option must have a .rhosts file on the server host listing the
job owner, meaning that UserS at the server must have a .rhosts file listing UserS.

Example 1-1: Our user is UserA on the submission host, but is userB at the server. In order to submit jobs as UserA and
run jobs as UserB, UserB must have a .rhosts file on the server host that lists UserA.

Table 1-3: Linux User ID and flatuid

Value of _—
flatuid Submission Host Username vs. Server Host Username
UserS Same as UserS UserS Different from UserA
True Server assumes user has permission to run job Server checks whether UserS can run job as UserA
False/ Server checks whether UserS can run job as UserS | Server checks whether UserS can run job as UserA
unset

Note that if different names are listed via the -u option, then they are checked regardless of the value of f1latuid.

Using hosts.equiv is not recommended.

1.4.2.8 Submitting Linux Jobs from Linux Clients

If the authentication method at a Linux client host has been set to pwd, set it to munge before you submit a Linux job.
For example:

export PBS AUTH METHOD=munge; gsub -lselect=1:arch=linux -- sleep 100

1.4.3 Setting Up Your Windows Environment
1.4.3.1 HOMEDIR for Windows Users

PBS starts jobs in the job owner’s home directory, which is pointed to by HOMEDIR.

If you have not been explicitly assigned a home directory, PBS uses a Windows-assigned default as the base location for
your default home directory, and starts jobs there. Windows assigns the following default home path:

[PROFILE PATH]\My Documents\PBS Pro

For example, if userA has not been assigned a home directory, the default home directory is the following:
\Documents and Settings\userA\My Documents\PBS Pro

Windows can return one PROFILE PATH in one of the following forms:

\Documents and Settings\username
\Documents and Settings\username.local-hostname
\Documents and Settings\username.local-hostname.00N

where N is a number

\Documents and Settings\username.domain-name

PBS Professional 2020.1.1 User’ s Guide uG-7

Chapter 1 Getting Started with PBS

1.4.3.2 Requirements for Windows Username

[T3R L)

e The username must contain only alphanumeric characters, dot (.), underscore (_), and/or hyphen
e The hyphen must not be the first letter of the username.

* If“@” appears in the username, then it is assumed to be in the context of a Windows domain account: user-
name@domainname.

* The space character is allowed. If a space character appears in a username string, then the string is displayed in
quotes, and must be specified in quotes.

1.4.3.3 Requirements for Windows User Account

Your Windows user account must be a normal user account. You cannot submit jobs from a SYSTEM account.

1.4.3.4 User Authorization under Windows

PBS runs your jobs under your account. When your job runs on a remote execution host, it needs to be able to log in and
transfer files using your account. If your system administrator has not set up access using hosts.equiv, you can set
up access using .rhosts files. A .rhosts file on the server allows you to submit jobs from a remote machine to the
server.

Set up the . rhosts file in your PROFILE_PATH, in your home directory, on the PBS server host and on each execution
host. For example:

\Documents and Settings\username\.rhosts
Format of .rhosts file:
hostname username

Be sure the . rhosts file is owned by you or an administrator-type group, and has write access granted only to you or an
administrator or group.

Add all PBS hosts to your . rhosts file:

Hostl userl
Host2 userl
Host3 userl

Make sure that you list all the names by which a host may be known. For instance, if Host4 is known as "Host4",
"Host4.<subdomain>", or "Host4.<subdomain>.<domain>" you should list all three in the .rhosts file:

Host4 userl
Host4.subdomain userl
Host4.subdomain.domain userl

If your username contains white space, quote it in the . rhosts file:
Host4.subdomain.domain “Bob Jones”

Example 1-2: The following entry in user userl’s .rhosts file on the server permits user userl to run jobs submitted
from the workstation wks031:

wks031 userl

To allow userl’s output files from a job that runs on execution host Host1 to be returned to userl automatically by
PBS, userl adds an entry to the . rhosts file on the workstation naming the execution host Host1:

Hostl userl

UG-8 PBS Professional 2020.1.1 User’ s Guide

Getting Started with PBS Chapter 1

1.4.3.5 Set up Paths

If you will use a mapped drive for submitting jobs, staging files in and out, or for output and error files, you must map
that drive with a local system account. We recommend using UNC paths. If you do not use a local system account, file
transfer behavior is undefined. To map a drive with global access using a local system account, use the psExec utility
from SysInternals:

<path to psexec binary> -s net use <mapped drive letter>: <UNC path to map>
For example:

psexec -s net use Z: \\examplehost\mapping directory\mydirectory
To unmap a mapped drive:
<path to psexec binary> -s net use /delete <mapped drive letter>
For example:

psexec -s net use /delete Z:

PBS requires that your username be consistent across a server and its execution hosts, but not across a submission host
and a server. You may have access to more than one server, and may have a different username on each server. You can
change the user ID for a job; see section 2.5.4, “Specifying Job Username”, on page 28.

1.4.3.6 Password for Job Submission Authentication

Run the pbs_login command whenever your password changes. The new password is used for any job that is not
already running.
1.4.3.6.i Setting Password at Windows Clients

Run the pbs login command once for each Windows submission host, so that you can submit jobs and run PBS client
commands.

echo <password>| pbs login -p
Test whether you can run client commands:
gstat -Bf

The new password is used for any job that is not already running.

1.4.3.6.ii Setting Password at Linux Clients

Run the pbs_login command at any Linux client host where you want to submit a Windows job. Set

PBS_AUTH_METHOD to pwd:-
export PBS AUTH METHOD=pwd; pbs login

1.4.3.7 Authentication for Client Commands

You can run all client commands except gsub using either pwd or munge as the authentication method, so you don’t
need to make any changes for commands such as gstat, etc.

144 Setting Time Zone for Submission Host

Make sure that the environment variable PBS_TZID is set correctly at your submission host. Set this environment vari-
able to a timezone location known to PBS Professional. You can get the appropriate zone location from the PBS server
host.

On Linux, use the tzselect command if it is available, or get the zone location from /usr/share/zoneinfo/
zone. tab.

PBS Professional 2020.1.1 User’ s Guide uG-9

Chapter 1 Getting Started with PBS

On all other platforms, use the list of 1ibical supported zoneinfo locations available under $PBS_EXEC/1lib/
ical/zoneinfo/zones.tab.

The format for PBS_TZID is a timezone location, rather than a timezone POSIX abbreviation. Examples of values for
PBS_TZID are:

America/Los_Angeles

America/Detroit

Europe/Berlin

Asia/Calcutta

UG-10 PBS Professional 2020.1.1 User’ s Guide

Submitting a PBS Job

2.1 Introduction to the PBS Job

To use PBS, you create a batch job, usually just called a job, which you then hand off, or submit, to PBS. A batch job is a
set of commands and/or applications you want to run on one or more execution machines, contained in a file or typed at
the command line. You can include instructions which specify the characteristics such as job name, and resource require-
ments such as memory, CPU time, etc., that your job needs. The job file can be a shell script under Linux, a cmd batch
file under Windows, a Python script, a Perl script, etc.

For example, here is a simple PBS batch job file which requests one hour of time, 400MB of memory, 4 CPUs, and runs
my_ application:

#!/bin/sh

#PBS -1 walltime=1:00:00

#PBS -1 mem=400mb, ncpus=4

./my application
To submit the job to PBS, you use the gsub command, and give the job script as an argument to gsub. For example, to
submit the script named “my script”:

gsub my script

We will go into the details of job script creation in section 2.2, “The PBS Job Script”, on page 14, and job submission in
section 2.3, “Submitting a PBS Job”, on page 18.

PBS Professional 2020.1.1 User’ s Guide UuG-11

Chapter 2 Submitting a PBS Job

211 Lifecycle of a PBS Job, Briefly

Your PBS job has the following lifecycle:

o ©® =Nk wDd

13.
14.

15.
16.
17.
18.

You write a job script

You submit the job to PBS

PBS accepts the job and returns a job ID to you

The PBS scheduler finds the right place and time to run your job, and sends your job to the selected execution host(s)
Application licenses are checked out

On each execution host, PBS creates a job-specific staging and execution directory

PBS sets PBS_JOBDIR and the job’s jobdir attribute to the path of the job’s staging and execution directory.

On each execution host allocated to the job, PBS creates a job-specific temporary directory.

PBS sets the TMPDIR environment variable to the pathname of the temporary directory.

. If any errors occur during directory creation or the setting of variables, the job is requeued.
11.
12.

Input files or directories are copied to the primary execution host
If needed, cpusets are created

If it exists, the prologue runs on the primary execution host, with its current working directory set to PBS_HOME/
mom priv, and with PBS_JOBDIR and TMPDIR set in its environment.

The job runs under your login

If it exists, the epilogue runs on the primary execution host, with its current working directory set to the path of the
job’s staging and execution directory, and with PBS_JOBDIR and TMPDIR set in its environment.

Output files or directories are copied to specified locations
Temporary files and directories are cleaned up
Application licenses are returned to pool

Any cpusets are deleted

For more detail about the lifecycle of a job, see section 3.2.7, “Summary of the Job Lifecycle”, on page 37 and section
3.2.8, “Detailed Description of Job Lifecycle”, on page 37.

2.1.2 Where and How Your PBS Job Runs

Your PBS jobs run on hosts that the administrator has designated to PBS as execution hosts. The PBS scheduler chooses
one or more execution hosts that have the resources that your job requires.

PBS runs your jobs under your user account. This means that your login and logout files are executed for each job, and
some of your environment goes with the job. It’s important to make sure that your login and logout files don’t interfere
with your jobs; see section 1.4.2, “Setting Up Your Linux Environment”, on page 5.

2.1.3 The Job Identifier

After you submit a job, PBS returns a job identifier. Format for a job:

<sequence number>.<server name>

UG-12 PBS Professional 2020.1.1 User’ s Guide

Submitting a PBS Job Chapter 2

Format for a job array:
<sequence number>[].<server name>.<domain>

You’ll need the job identifier for any actions involving the job, such as checking job status, modifying the job, tracking
the job, or deleting the job.

The largest possible job ID is the 7-digit number 9,999,999. After this has been reached, job IDs start again at zero.

21.4 Shell Script(s) for Your Job

When PBS runs your job, PBS starts the top shell that you specify for the job. The top shell defaults to your login shell
on the execution host, but you can set another using the job’s Shell_Path_List attribute. See section 2.3.3.1, “Specify-
ing the Top Shell for Your Job”, on page 19.

Under Linux, if you do not specify a shell inside the job script, PBS defaults to using /bin/sh. If you specify a differ-
ent shell inside the job script, the top shell spawns that shell to run the script; see section 2.3.3.2, “Specifying Job Script
Shell or Interpreter”, on page 20.

Under Windows, the job shell is the same as the top shell.

21.5 Scratch Space for Jobs

When PBS runs your job, it creates a temporary scratch directory for the job on each execution host. If your administra-
tor has not specified a temporary directory, the root of the temporary directory is /var/tmp. Your administrator can
specify a root for the temporary directory on each execution host using the $tmpdir MoM parameter. PBS sets the TMP-
DIR environment variable to the full path to the temporary scratch directory.

Under Windows, PBS creates the temporary directory and sets TMP to the value of the Windows % TMPDIR% environ-
ment variable. If your administrator has not specified a temporary directory, PBS creates the temporary directory under
either \winnt\temp or \windows\temp.

PBS removes the directory when the job is finished. The location of the temporary directory is set by PBS; you should
not set TMPDIR.

Your job script can access the scratch space. For example:
Linux:
cd $TMPDIR
Windows:
cd $TMPDIRS
For scratch space for MPI jobs, see section 5.2.3, “Caveats for Using MPIs”, on page 84.

21.6 Types of Jobs

PBS allows you to submit standard batch jobs or interactive jobs. The difference is that while the interactive job runs,
you have an interactive session running, giving you interactive access to job processes. There is no interactive access to
a standard batch job. We cover interactive jobs in section 6.11, “Running Your Job Interactively”, on page 121.

21.7 Job Input and Output Files

You can tell PBS to copy files or directories from any accessible location to the execution host, and to copy output files
and directories from the execution host wherever you want. We describe how to do this in Chapter 3, "Job Input & Out-
put Files", on page 31.

PBS Professional 2020.1.1 User’ s Guide UG-13

Chapter 2 Submitting a PBS Job

2.2 The PBS Job Script

2.21 Overview of a Job Script

A PBS job script consists of:
* An optional shell specification
e PBS directives

e Job tasks (programs or commands)

2.2.2 Types of Job Scripts

PBS allows you to use any of the following for job scripts:
e A Python, Perl, or other script that can run under Windows or Linux
e A shell script that runs under Linux

e Windows command or PowerShell batch script under Windows

2.2.21 Linux Shell Scripts

Since the job file can be a shell script, the first line of a shell script job file specifies which shell to use to execute the
script. Your login shell is the default, but you can change this. This first line can be omitted if it is acceptable for the job
file to be interpreted using the login shell. We recommend that you always specify the shell.

2222 Python Job Scripts

PBS allows you to submit jobs using Python scripts under Windows or Linux. PBS includes a Python package, allowing
Python job scripts to run; you do not need to install Python. To run a Python job script:

Linux:
gsub <script name>
Windows:
gsub -S %PBS_EXEC%\bin\pbs python.exe <script name>
If the path contains any spaces, it must be quoted, for example:
gsub -S "%PBS_EXEC%\bin\pbs python.exe" <python job script>
You can include PBS directives in a Python job script as you would in a Linux shell script. For example:

% cat myjob.py

#! /usr/bin/python

#PBS -1 select=1:ncpus=3:mem=1gb
#PBS -N HelloJob

print “Hello”

Python job scripts can access Win32 APIs, including the following modules:

* Win32api
* Win32con
* Pywintypes

uG-14 PBS Professional 2020.1.1 User’ s Guide

Submitting a PBS Job Chapter 2

2.2.2.2i Debugging Python Job Scripts

You can run Python interactively, outside of PBS, to debug a Python job script. You use the Python interpreter to test
parts of your script.

Under Linux, use the -i option to the pbs_python command, for example:
/opt/pbs/bin/pbs_python -i <return>
Under Windows, the -i option is not necessary, but can be used. For example, either of the following will work:

C:\Program Files\PBS\exec\bin\pbs python.exe <return>
C:\Program Files\PBS\exec\bin\pbs python.exe -i <return>
When the Python interpreter runs, it presents you with its own prompt. For example:
% /opt/pbs/bin/pbs python -i <return>
>> print "hello"
hello

2.2.2.2.ii Python Windows Caveat

If you have Python natively installed, and you need to use the win32api, make sure that you import pywintypes
before win32api, otherwise you will get an error. Do the following:

cmd> pbs python

>> import pywintypes
>> import win32api

2.2.2.3 Windows Job Scripts

The Windows script can be a . exe or .bat file, or a Python or Perl script.

2.2.2.3.i Requirements for Windows Command Scripts

e Under Windows, comments in the job script must be in ASCII characters.

e Any .bat files that are to be executed within a PBS job script have to be prefixed with "call" as in:
@echo off
call E:\stepl.bat
call E:\step2.bat

Without the "call", only the first .bat file gets executed and it doesn't return control to the calling interpreter.

For example, an old job script that contains:

@echo off
E:\stepl.bat
E:\step2.bat

should now be:

@echo off
call E:\stepl.bat
call E:\step2.bat

2.2.2.3.ii Windows Advice and Caveats

* In Windows, if you use notepad to create a job script, the last line is not automatically newline-terminated. Be sure
to add one explicitly, otherwise, PBS job will get the following error message:

More?

PBS Professional 2020.1.1 User’ s Guide UG-15

Chapter 2 Submitting a PBS Job

when the Windows command interpreter tries to execute that last line.
e Drive mapping commands are typically put in the job script.

* Do not use xcopy inside a job script. Use copy, robocopy, or pbs_rcp instead. The xcopy command some-
times expects input from the user. Because of this, it must be assigned an input handle. Since PBS does not create the
job process with an input handle assigned, xcopy can fail or behave abnormally if used inside a PBS job script.

e PBS jobs submitted from cygwin execute under the native cmd environment, and not under cygwin.

223 Setting Job Characteristics
2.2.3.1 Job Attributes

PBS represents the characteristics of a job as attributes. For example, the name of a job is an attribute of that job, stored
in the value of the job’s Job_Name attribute. Some job attributes can be set by you, some can be set only by adminis-
trators, and some are set only by PBS. For a complete list of PBS job attributes, see “Job Attributes” on page 328 of the
PBS Professional Reference Guide. Job attributes are case-insensitive.

2.2.3.2 Job Resources

PBS represents the things that a job might use as resources. For example, the number of CPUs and the amount of mem-
ory on an execution host are resources. PBS comes with a set of built-in resources, and your PBS administrator can
define resources. You can see a list of all built-in PBS resources in Chapter 5, "List of Built-in Resources", on page 259.
Resources are case-insensitive.

2.2.3.3 Setting Job Attributes

You can set job attributes and request resources using the following equivalent methods:

e Using specific options to the gsub command at the command line; for example, —e <path> to set the error path.
e Using PBS directives in the job script; for example, #PBS Error Path=<path> to set the error path.

These methods have the same functionality. If you give conflicting options to gsub, the last option specified overrides
any others. Options to the gsub command override PBS directives, which override defaults. Some job attributes and
resources have default values; your administrator can set default values for some attributes and resources.

After the job is submitted, you can use the galter command to change the job’s characteristics.

2234 Using PBS Directives

A directive has the directive prefix as the first non-whitespace characters. The default for the prefix is #PBS.

Put all your PBS directives at the top of the script file, above any commands. Any directive after an executable line in the
script is ignored. For example, if your script contains “@echo”, put that line below all PBS directives.

2.2.34. Changing the Directive Prefix

By default, the text string “#PBS” is used by PBS to determine which lines in the job file are PBS directives. The leading
“#” symbol was chosen because it is a comment delimiter to all shell scripting languages in common use on Linux sys-
tems. Because directives look like comments, the scripting language ignores them.

UG-16 PBS Professional 2020.1.1 User’ s Guide

Submitting a PBS Job Chapter 2

Under Windows, however, the command interpreter does not recognize the ‘#’ symbol as a comment, and will generate a
benign, non-fatal warning when it encounters each “#PBS” string. While it does not cause a problem for the batch job, it
can be annoying or disconcerting to you. If you use Windows, you may wish to specify a different PBS directive, via
either the PBS_DPREFIX environment variable, or the “~C” option to gsub. The gsub option overrides the environ-
ment variable. For example, we can direct PBS to use the string “REM PBS” instead of “#PBS” and use this directive
string in our job script:

REM PBS -1 walltime=1:00:00

REM PBS -1 select=mem=400mb

REM PBS -j oe

date /t

.\my application

date /t
Given the above job script, we can submit it to PBS in one of two ways:

set PBS DPREFIX=REM PBS

gsub my job script
or

gsub -C "REM PBS" my job script

2.2.3.4.ii Caveats and Restrictions for PBS Directives
e You cannot use PBS_DPREFIX as the directive prefix.

e The limit on the length of a directive string is 4096 characters.

2.2.4 Job Tasks

These can be programs or commands. This is where you can specify an application to be run.

2.2.5 Job Script Names

We recommended that you avoid using special characters in job script names. If you must use them, on Linux you must
escape them using the backslash (“\””) character.

2251 How PBS Parses a Job Script

PBS parses a job script in two parts. First, the gsub command scans the script looking for directives, and stops at the
first executable line it finds. This means that if you want gsub to use a directive, it must be above any executable lines.
Any directive below the first executable line is ignored. The first executable line is the first line that is not a directive,
whose first non-whitespace character is not “#”, and is not blank. For information on directives, see section 2.2.3.4,
“Using PBS Directives”, on page 16.

Second, lines in the script are processed by the job shell. PBS pipes the name of the job script file as input to the top
shell, and the top shell executes the job shell, which runs the script. You can specify which shell is the top shell; see sec-
tion 2.3.3.1, “Specifying the Top Shell for Your Job”, on page 19, and, under Linux, which shell you want to run the
script in the first executable line of the script; see section 2.3.3.2, “Specifying Job Script Shell or Interpreter”, on page
20.

2.2.51.i Comparison Between Equivalent Linux and Windows Job Scripts

The following Linux and Windows job scripts produce the same results.

PBS Professional 2020.1.1 User’ s Guide uUG-17

Chapter 2 Submitting a PBS Job

Linux:
#!/bin/sh
#PBS -1 walltime=1:00:00
#PBS -1 select=mem=400mb

#PBS -j oe
date
./my_application
date

Windows:

REM PBS -1 walltime=1:00:00
REM PBS -1 select=mem=400mb
REM PBS -j oe

date /t
my application
date /t

The first line in the Windows script does not contain a path to a shell because you cannot specify the path to the shell or
interpreter inside a Windows job script. See section 2.3.3.2, “Specifying Job Script Shell or Interpreter”, on page 20.

The remaining lines of both files are almost identical. The primary differences are in file and directory path specifica-
tions, such as the use of drive letters, and slash vs. backslash as the path separator.

The lines beginning with “#PBS” and “REM PBS” are PBS directives. PBS reads down the job script until it finds the
first line that is not a valid PBS directive, then stops. From there on, the lines in the script are read by the job shell or
interpreter. In this case, PBS sees lines 6-8 as commands to be run by the job shell.

In our examples above, the “~1 <resource>=<value>” lines request specific resources. Here, we request 1 hour of
wall-clock time as a job-wide request, and 400 megabytes (MB) of memory in a chunk. We will cover requesting
resources in Chapter 4, "Allocating Resources & Placing Jobs", on page 49.

The “~j oe” line requests that PBS join the stdout and stderr output streams of the job into a single stream. We
will cover merging output in "Merging Output and Error Files” on page 43.

The last three lines are the command lines for executing the programs we wish to run. You can specify as many programs,
tasks, or job steps as you need.

2.3 Submitting a PBS Job

2.31 Prerequisites for Submitting Jobs

Before you submit any jobs, set your environment appropriately. Follow the instructions in section 1.4, “Setting Up Your
Environment”, on page 5.

UG-18 PBS Professional 2020.1.1 User’ s Guide

Submitting a PBS Job Chapter 2

2.3.2 Ways to Submit a PBS Job

You can use the gsub command to submit a normal or interactive job to PBS:

* You can call gsub with a job script; see section 2.3.3, “Submitting a Job Using a Script”, on page 19

* You can call gsub with an executable and its arguments; see section 2.3.4, “Submitting Jobs by Specifying Execut-
able on Command Line”, on page 22

* You can call gsub and give keyboard input; see section 2.3.5, “Submitting Jobs Using Keyboard Input”, on page 22

You can use an Altair front-end product to submit and monitor jobs; go to www.pbsworks.com.

2.3.3 Submitting a Job Using a Script

You submit a job to PBS using the gsub command. For details on gsub, see “gsub” on page 213 of the PBS Profes-
sional Reference Guide. To submit a PBS job, type the following:

e Linux shell script:
gsub <name of shell script>

e Linux Python or Perl script:
gsub <name of Python or Perl job script>

* Windows command script:
gsub <name of job script>

e Windows Python script:
gsub -S %PBS EXEC%\bin\pbs python.exe <name of python job script>
If the path contains any spaces, it must be quoted, for example:

gsub -S "%PBS_EXEC%\bin\pbs python.exe" <name of python job script>

2.3.31 Specifying the Top Shell for Your Job

You can can specify the path and name of the shell to use as the top shell for your job. The rules for specifying the top
shell are different for Linux and Windows; do not skip the following subsections numbered 2.3.3.1.i and 2.3.3.1.ii.

The Shell_Path_List job attribute specifies the top shell; the default is your login shell on the execution host. You can
set this attribute using the the following:

* The “-S <path list>” optionto gsub

* The #PBS Shell Path List=<path list> PBS directive
The option argument path list has this form:
<path>[@<hostname>][, <path>[(@<hostname>],...]

You must supply a path list if you attempt to set Shell_Path_List, otherwise, you will get an error. You can specify only
one path for any host you name. You can specify only one path that doesn’t have a corresponding host name.

PBS chooses the path whose host name matches the name of the execution host. If no matching host is found, then PBS
chooses the path specified without a host, if one exists.

2.3.31.i Specifying Job Top Shell Under Linux

On Linux, the job’s top shell is the one MoM starts when she starts your job, and the job shell is the shell or interpreter
that runs your job script commands.

PBS Professional 2020.1.1 User’ s Guide UG-19

Chapter 2 Submitting a PBS Job

Under Linux, you can use any shell such as csh or sh, by specifying gsub -S <path>. You cannot use Perl or
Python as your top shell.

Example 2-1: Using bash:
gsub -S /bin/bash <script name>

2.3.3.1.ii Specifying Job Top Shell Under Windows
On Windows, the job shell is the same as the top shell.

Under Windows, you can specify a shell or an interpreter such as Perl or Python, and if your job script is Perl or Python,
you must specify the language using an option to gsub; you cannot specify it in the job script.

Example 2-2: Running a Python script on Windows:
gsub -S "C:\Program Files\PBS\exec\bin\pbs python.exe" <script name>

2.3.3.1.iii Caveats for Specifying Job Top Shell

If you specify a relative path for the top shell, the full path must be available in your PATH environment variable on the
execution host(s). We recommend specifying the full path.

2.3.3.2 Specifying Job Script Shell or Interpreter
2.3.3.2i Specifying Job Script Shell or Interpreter Under Linux

If you don’t specify a shell for the job script, it defaults to /bin/sh. You can use any shell, and you can use an inter-
preter such as Perl or Python.

You specify the shell or interpreter in the first line of your job script. The top shell spawns the specified process, and this
process runs the job script. For example, to use /bin/sh to run the script, use the following as the first line in your job
script:

#!/bin/sh

To use Perl or Python to run your script, use the path to Perl or Python as the first line in your script:
#!/usr/bin/perl

or

#!/usr/bin/python

2.3.3.2.ii Specifying Job Script Shell or Interpreter Under Windows

Under Windows, the job shell or interpreter is the same as the top shell or interpreter. You can specify the top/job shell or
interpreter, but not a separate job shell or interpreter. To use a non-default shell or interpreter, you must specify it using
an option to gsub:

gsub -S <path to shell or interpreter> <script name>

2.3.3.3 Examples of Submitting Jobs Using Scripts

Example 2-3: Our job script is named “myjob”. We can submit it by typing:
gsub myjob

UG-20 PBS Professional 2020.1.1 User’ s Guide

Submitting a PBS Job Chapter 2

and then PBS returns the job ID:
16387.exampleserver .exampledomain

Example 2-4: The following is the contents of the script named “my job”. In it, we name the job “testjob”, and run a pro-
gram called “myprogram”:

#!/bin/sh
#PBS -N testjob
. /myprogram
Example 2-5: The simplest way to submit a job is to give the script name as the argument to gsub, and hit return:
gsub <job script> <return>
If the script contains the following:
#!/bin/sh
./myapplication

you have simply told PBS to run myapplication.

2334 Passing Arguments to Jobs

If you need to pass arguments to a job script, you can do the following:
e Use environment variables in your script, and pass values for the environment variables using -v or -V.
For example, to use myinfile as the input to a.out, your job script contains the following:
#PBS -N myjobname
a.out < S$INFILE
You can then use the -V option:
gsub -v INFILE=/tmp/myinfile <job script>
For example, to use myinfile and mydata as the input to a.out, your job script contains the following:
#PBS -N myjobname
cat $INFILE SINDATA | a.out
You can then use the -V option:
gsub -v INFILE=/tmp/myinfile, INDATA=/tmp/mydata <job script>
You can export the environment variable first:
export INFILE=/tmp/myinfile
gsub -V <job script>
e Use a here document. For example:
gsub [option] [option] ... <return>
#PBS <directive>
./jobscript.sh argl <*d>
152.examplehost

If you need to pass arguments to a job, you can do any of the following:
e Pipe a shell command to gsub.

For example, to directly pass myinfile and mydata as the input to a . out, type the following, or make them into
a shell script:

echo "a.out myinfile mydata" | gsub -1 select=...

PBS Professional 2020.1.1 User’ s Guide UuG-21

Chapter 2 Submitting a PBS Job

For example:
echo "jobscript.sh -a argl -b arg2" | gsub -1 select=...

For example, to use an environment variable to pass myinfile as the input to a.out, type the following, or make
them into a shell script:

export INFILE=/tmp/myinfile

export INDATA=/tmp/mydata

echo "a.out $INFILE $INDATA" | gsub

e Usegsub --<executable> <arguments to executable>. See section 2.3.4, “Submitting Jobs by
Specifying Executable on Command Line”, on page 22.

2.3.4 Submitting Jobs by Specifying Executable on
Command Line

You can run a PBS job by specifying an executable and its arguments instead of a job script. When you run gsub this
way, it runs the executable directly. It does not start a shell, so no shell initialization scripts are run, and execution paths
and other environment variables are not set. There is not an easy way to run your command in a different directory. You
should make sure that environment variables are set correctly, and you will usually have to specify the full path to the
command.

To submit a job directly, you specify the executable on the command line:
qsub [<options>] -- <executable> [<arguments to executable>] <return>
For example, to run myprog with the arguments a and b:

gsub -- myprog a b <return>
To run myprog with the arguments a and b, naming the job JObA,

gsub -N JobA -- myprog a b <return>
To use environment variables you define earlier:

export INFILE=/tmp/myinfile

export INDATA=/tmp/mydata
gsub -- a.out $INFILE $INDATA

2.3.5 Submitting Jobs Using Keyboard Input

You can specify that gsub read input from the keyboard. If you run the gsub command, with the resource requests on
the command line, and then press “enter” without naming a job file, PBS will read input from the keyboard. (This is often
referred to as a “here document”.) You can direct gsub to stop reading input and submit the job by typing on a line by
itself a control-d (Linux) or control-z, then “enter” (Windows). You get the same behavior with and without a
dash operand.

Note that, under Linux, if you enter a control-c while gsub is reading input, gsub will terminate the process and
the job will not be submitted. Under Windows, however, often the control-c sequence will, depending on the com-
mand prompt used, cause gsub to submit the job to PBS. In such case, a control-break sequence will usually ter-
minate the gsub command.
gsub [<options>] [-] <return>

[<directives>]

[<tasks>]

ctrl-D

uG-22 PBS Professional 2020.1.1 User’ s Guide

Submitting a PBS Job Chapter 2

2.3.6 Submitting Windows Jobs

Your PBS complex may have all Windows execution and client (submission) hosts, or it may have some Linux and some
Windows execution and client hosts. If your complex has some of each execution host, make sure that Windows jobs
land on Windows execution hosts, whether you are submitting from Linux or Windows clients.

2.3.6.1 Submitting Windows Jobs from Windows Clients

If you have not already, run the pbs_login command at each submission host, initially and once for each password
change:

echo <password>| pbs_login -p

When you submit a Windows job from a Windows client, make sure you request a Windows execution host. Request the
arch resource set to “windows”:

gsub -lselect=1:arch=windows

2.3.6.2 Submitting Windows Jobs from Linux Clients
If you have not already, run the pbs_login command at any Linux client host where you want to submit a Windows
job. Set PBS_AUTH_METHOD to pwd:
export PBS AUTH METHOD=pwd; pbs login
In order to submit a Windows job from a Linux client, specify that the architecture is Windows. For example:

export PBS AUTH METHOD=pwd; gsub -lselect=1:arch=windows -- pbs-sleep 100

24 Job Submission Recommendations and Advice

241 Trapping Signals in Script

You can trap signals in your job script. For example, you can trap preemption and suspension signals.

If you want to trap the signal in your job script, the signal may need to be trapped by all of the job’s shells, depending on
the signal.

The signal TERM is useful, because it is ignored by shells, but you can trap it and do useful things such as write out sta-
tus.

Example 2-6: Ignore the listed signals:
trap "" 12 315

Example 2-7: Call the function “goodbye” for the listed signals:
trap goodbye 1 2 3 15

PBS Professional 2020.1.1 User’ s Guide UG-23

Chapter 2

Submitting a PBS Job

2.5

Job Submission Options

The table below lists the options to the gsub command, and points to an explanation of each:

Table 2-1: Options to the gsub Command

Option Function and Page Reference
-A <account_ string> "Specifying Accounting String” on page 29
-a <date_time> "Deferring Execution” on page 119
-C “<directive prefix>" "Changing the Directive Prefix” on page 16
-c <interval> "Using Checkpointing” on page 113
-e <path> "Paths for Output and Error Files” on page 42
-G "Submitting Interactive GUI Jobs on Windows” on page 125
-h "Holding and Releasing Jobs” on page 115
-I "Running Your Job Interactively” on page 121
-J X-Y[:2Z2] "Submitting a Job Array” on page 152
-j <join> "Merging Output and Error Files” on page 43
-k <keep> "Keeping Output and Error Files on Execution Host” on page 44
-1 <resource list> "Requesting Resources” on page 51
-M <user list> "Setting Email Recipient List” on page 26
-m <mail options> "Specifying Email Notification” on page 25
-N <name> "Specifying Job Name” on page 27
-0 <path> "Paths for Output and Error Files” on page 42
-p <priority> "Setting Priority for Your Job” on page 120
-P <project> "Specifying a Project for a Job” on page 27
-g <destination> "Specifying Server and/or Queue” on page 29
-r <value> "Allowing Your Job to be Re-run” on page 118
-R <remove options> "Avoiding Creation of stdout and/or stderr” on page 43
-S <path list "Specifying the Top Shell for Your Job” on page 19
-u <user list> "Specifying Job Username” on page 28
-V "Exporting All Environment Variables” on page 126
-v <variable list> "Exporting Specific Environment Variables” on page 126
-W <attribute>=<value> "Setting Job Attributes” on page 16
-W block=true "Making qsub Wait Until Job Ends” on page 120
-W depend=<list> "Using Job Dependencies” on page 107

-W

group_ list=<list>

"Specifying Job Group ID” on page 28

UG-24

PBS Professional 2020.1.1 User’s Guide

Submitting a PBS Job

Chapter 2

Table 2-1: Options to the gsub Command

Option

Function and Page Reference

-W
release nodes_on_stageout=<value>

"Releasing Unneeded Vnodes from Your Job” on page 128

-W run_count=<value>

"Controlling Number of Times Job is Re-run” on page 119

-W sandbox=<value>

"Staging and Execution Directory: User Home vs. Job-specific”
on page 31

-W stagein=<list>

"Input/Output File Staging” on page 31

-W stageout=<list>

"Input/Output File Staging” on page 31

-W umask=<value>

"Changing Linux Job umask” on page 45

-X

"Receiving X Output from Interactive Linux Jobs” on page 124

-2

"Suppressing Printing Job Identifier to stdout” on page 30

2.5.1

Specifying Email Notification

For each job, PBS can send mail to designated recipients when that job or subjob reaches specific points in its lifecycle.
There are points in the life of the job where PBS always sends email, and there are points where you can choose to

receive email; see the table below for a list.

Table 2-2: Points in Job/Reservation Lifecycle when PBS Sends Mail

Point in Lifecycle

Always Sent or Optional?

Job cannot be routed, either because the job makes
too many routing hops or because all destinations
reject it

Optional. Mail is sent when -m a is specified.

For subjobs, mail is sent when -m a7 is specified.

Job is deleted by job owner

Optional; depends on gdel -Wsuppress email

Job is deleted by someone other than job owner

Always

Job or subjob is aborted by PBS:

Job or subjob cannot be executed because of bad
user/group account, bad checkpoint/restart file, sys-
tem error, bad resource request, or bad dependency

Optional. Mail is sent when -m a is specified.

For subjobs, mail is sent when -m a7 is specified.

Job is held by PBS with bad password hold Always
Job begins execution Optional
Job ends execution Optional
Stagein fails Always
All file stageout attempts fail Always
Reservation is confirmed or denied Always

PBS always sends you mail when your job or subjob is deleted. For job arrays, PBS sends one email per subjob.

You can restrict the number of job-related emails PBS sends when you delete jobs or subjobs; see section 2.5.1.3,
“Restricting Number of Job Deletion Emails”, on page 27.

PBS Professional 2020.1.1 User’ s Guide

UG-25

Chapter 2 Submitting a PBS Job

2511 Specifying Job Lifecycle Email Points

The set of points where PBS sends mail is specified in the Mail_Points job attribute. When you use the —j suboption
with one or more of the other sub-options, PBS sends mail for each subjob; without this suboption, PBS sends mail only
for jobs and parent array jobs. You can set the Mail_Points attribute using the following methods:

e The-m <mail points> option to gsub

e The-m <mail points> optionto galter

* The #PBS -WMail Points=<mail points> PBS directive
The mail points argument is a string which consists of either:

e The single character “n”

e One or more of the characters “a”, “b”, and “€” with optional *j”.

The following table lists the sub-options to the -m option:

Table 2-3: Sub-options to m Option

Suboption Meaning

n Do not send mail

Send mail when job or subjob is aborted by batch system. This is the default

Send mail when job or subjob begins execution
Example:

Begun execution

e Send mail when job or subjob ends execution

J Send mail for subjobs. Must be combined with one or more of a, b, or € sub-options.

Example 2-8: PBS sends mail when the job is aborted or ends:

gsub -m ae my job
#PBS -m ae

2.51.2 Setting Email Recipient List

The list of recipients to whom PBS sends mail is specified in the Mail_Users job attribute. You can set the Mail_Users
attribute using the following methods:

e The-M <mail recipients> optionto gsub
e The #PBS -WMail Users=<mail recipients> PBS directive
The mail recipients argument is a list of user names with optional hostnames in this format:
<username>[(@<hostname>] [,<username>[[@<hostname>],...]
For example:
gsub -M userl@mydomain.com my job
When you set this option for a job array, PBS sets the option for each subjob, and sends mail for each subjob.

UG-26 PBS Professional 2020.1.1 User’ s Guide

Submitting a PBS Job Chapter 2

2513 Restricting Number of Job Deletion Emails

By default, when you delete a job or subjob, PBS sends you email. You can use gdel -
Wsuppress_email=<limit> to restrict the number of emails sent to you each time you use gdel. This option
behaves as follows:

limit >=1

You receive at most /imit emails.
limit=0

PBS ignores this option.
limit =-1

You receive no emails.

2.5.2 Specifying Job Name

If you submit a job using a script without specifying a name for the job, the name of the job defaults to the name of the
script. If you submit a job without using a script and without specifying a name for the job, the job name is STDIN.

You can specify the name of a job using the following methods:
e Usinggsub -N <job name>
e Using #PBS -N <job name>
e Using #PBS -WJob Name=<job name>
For example:
gsub -N myName my job
#PBS -N myName
#PBS -WJob Name=my job

The job name can be up to 236 characters in length, and must consist of printable, non-whitespace characters. The first
character must be alphabetic, numeric, hyphen, underscore, or plus sign.

253 Specifying a Project for a Job

In PBS, a project is a way to organize jobs independently of users and groups. You can use a project as a tag to group a
set of jobs. Each job can be a member of up to one project.

Projects are not tied to users or groups. One user or group may run jobs in more than one project. For example, user Bob
runs JobA in ProjectA and JobB in ProjectB. User Bill runs JobC in ProjectA. User Tom runs JobD in ProjectB. Bob
and Tom are in Groupl, and Bill is in Group?2.

A job’s project attribute specifies the job’s project. See “project” on page 341 of the PBS Professional Reference Guide.
You can set the job’s project attribute in the following ways:

e At submission:
* Usinggsub -P <project name>
* Via#PBS project=<project name>

e After submission, via galter -P <project name>;see “qalter” on page 127 of the PBS Professional Refer-
ence Guide

PBS Professional 2020.1.1 User’ s Guide uG-27

Chapter 2 Submitting a PBS Job

254 Specifying Job Username

By default PBS runs your job under the username with which you log in. You may need to run your job under a different
username depending on which PBS server runs the job. You can specify a list of user names under which the job can run.
All but one of the entries in the list must specify the PBS server hostname as well, so that PBS can choose which user-
name to use by looking at the hostname. You can include one entry in the list that does not specify a hostname; PBS uses
this in the case where the job was sent to a server that is not in your list.

The list of user names is stored in the User_List job attribute. The value of this attribute defaults to the user name under
which you logged in. There is no limit to the length of the attribute.

List entries are in the following format:

<username>@<hostname> [, <username>@<hostname> ...][,<username>]
You can set the value of User_List in the following ways:

* Youcanuse gsub -u <username>

* You can use a directive: #PBS User List=<username list>

Example 2-9: Our user is UserS on the submission host HostS, UserA on server ServerA, and UserB on server ServerB,
and is UserC everywhere else. Note that this user must be UserA on all ExecutionA and UserB on all ExecutionB
machines. Then our user can use “gsub -u UserA@ServerA,UserB@ServerB,UserC” for the job. The job
owner will always be UserS. On Linux, UserA, UserB, and UserC must each have .rhosts files at their servers
that list UsersS.

2541 Caveats for Changing Job Username

e Wherever your job runs, you must have permission to run the job under the specified username:

e For Linux, see section 1.4.2.7, “User Authorization Under Linux”, on page 7.

¢ For Windows, see section 1.4.3.4, “User Authorization under Windows”, on page 8.

e Usernames are limited to 256 characters.

2.5.5 Specifying Job Group ID

Your username can belong to more than one group, but each PBS job is only associated with one of those groups. By
default, the job runs under the primary group. The job’s group is specified in the group_list job attribute. You can
change the group under which your job runs on the execution host either on the command line or by using a PBS direc-
tive:

gsub -W group list=<group list>

#PBS group_ligt=<group list>
For example:

gsub -W group list=grpA,grpB@jupiter my job
The <group list> argument has the following form:
<group>[@<hostname>][,<group>[@<hostname>],...]
You can specify only one group name per host.

You can specify only one group without a corresponding host; that group name is used for execution on any host not
named in the argument list.

The group_list defaults to the primary group of the username under which the job runs.

UG-28 PBS Professional 2020.1.1 User’ s Guide

Submitting a PBS Job Chapter 2

2.5.5.1 Group Names Under Windows

Under Windows, the primary group is the first group found for the username by PBS when querying the accounts data-
base.

Under Windows, the default group assigned is determined by what the Windows API NetUserGetLocalGroup() and
NetUserGetGroup() return as first entry. PBS checks the former output (the local groups) and returns the first group it
finds. If the former call does not return any value, then it proceeds to the latter call (the Global groups). If PBS does not
find any output on the latter call, it uses the default “Everyone”.

We do not recommend depending on always getting “Users” in this case. Sometimes you may submit a job without the —
Wgroup list option, and get a default group of “None” assigned to your job.

2.5.6 Specifying Accounting String

You can associate an accounting string with your job by setting the value of the Account_Name job attribute. This
attribute has no default value. You can set the value of Account_Name at the command line or in a PBS directive:

gsub -A <accounting string>
#PBS Account Name=<accounting string>

The <accounting string> can be any string of characters; PBS does not attempt to interpret it.

2.5.7 Specifying Server and/or Queue

By default, PBS provides a default server and a default queue, so that jobs submitted without a server or queue specifica-
tion end up in the default queue at the default server.

If your administrator has configured the PBS server with more than one queue, and has configured those queues to accept
jobs from you, you can submit your job to a non-default queue.

e If you will submit jobs mainly to one non-default server, set the PBS_SERVER environment variable to the name
of your preferred server. Once this environment variable is set to your preferred server, you don’t need to specify
that server when you submit a job to it.

e If you will submit jobs mostly to the default server, and just want to submit this one to a specific queue at a non-
default server:

* Usegsub -g <queue name>@<server name>
e Use#PBS -g <queue name>@<server name>

e If you will submit jobs mostly to the default server, and just want to submit this one to the default queue at a non-
default server:

* Usegsub -g @<server name>
e Use#PBS -g @<server name>

e You can submit your job to a non-default queue at the default server, or the server given in the PBS_SERVER envi-
ronment variable if it is defined:

e Usegsub -g <queue name>
e Use #PBS -g <queue name>

If the PBS server has no default queue and you submit a job without specifying a queue, the gsub command will com-
plain.

PBS or your administrator may move your job from one queue to another. You can see which queue has your job using
gstat [job ID]. The job’s queue attribute contains the name of the queue where the job resides.

PBS Professional 2020.1.1 User’ s Guide UG-29

Chapter 2 Submitting a PBS Job

Examples:

gsub -q queue my job

gsub -q @server my job

#PBS -q queuel

gsub -q queuel@myserver my job

gsub -g queuel@myserver.mydomain.com my job

25.71 Using or Avoiding Dedicated Time
Dedicated time is one or more specific time periods defined by the administrator. These are not repeating time periods.
Each one is individually defined.

During dedicated time, the only jobs PBS starts are those in special dedicated time queues. PBS schedules non-dedicated
jobs so that they will not run over into dedicated time. Jobs in dedicated time queues are also scheduled so that they will
not run over into non-dedicated time. PBS will attempt to backfill around the dedicated-non-dedicated time borders.

PBS uses walltime to schedule within and around dedicated time. If a job is submitted without a walltime to a non-dedi-
cated-time queue, it will not be started until all dedicated time periods are over. If a job is submitted to a dedicated-time
queue without a walltime, it will never run.

To submit a job to be run during dedicated time, use the -g <queue name> option to gsub and give the name of the
dedicated-time queue you wish to use as the queue name. Queues are created by the administrator; see your administra-
tor for queue name(s).

2.5.8 Suppressing Printing Job Identifier to stdout

To suppress printing the job identifier to standard output, use the —z option to gsub. You can use it at the command line
or in a PBS directive:

gsub -z my job
#PBS -z

There is no associated job attribute for this option.

2.5.9 Running qsub in the Foreground

Normally, gsub runs in the background. You can run it in the foreground by using the -f option. By default, gsub
attempts to communicate with a background gsub daemon that may have been instantiated from an earlier invocation.
This background daemon can be holding onto an authenticated server connection, speeding up performance.

This option can be helpful when you are submitting a very short job which submits another job, or when you are running
codes written in-house for Windows.

2.6 Job Submission Caveats

2.6.1 Caveats for Mixed Linux-Windows Operation

* You cannot submit a Linux job from a Windows client

UG-30 PBS Professional 2020.1.1 User’ s Guide

Job Input & Output Files

3.1 Introduction to Job File I/O in PBS

PBS allows you to manage input files, output files, standard output, and standard error. PBS has two mechanisms for
handling job files; you use staging for input and output files, and you select whether stdout and/or stderr are copied
back using the Keep_Files job attribute.

3.2 Input/Output File Staging

File staging is a way to specify which input files should be copied onto the execution host before the job starts, and which
output files should be copied off the execution host when it finishes.

3.2.1 Staging and Execution Directory: User Home vs. Job-
specific

The job’s staging and execution directory is the directory to which files are copied before the job runs, and from which
output files are copied after the job has finished. This directory is either your home directory or a job-specific directory
created by PBS just for this job. If you use job-specific staging and execution directories, you don’t need to have a home
directory on each execution host, as long as those hosts are configured properly. In addition, each job gets its own stag-
ing and execution directory, so you can more easily avoid filename collisions.

This table lists the differences between using your home directory for staging and execution and using a job-specific

staging and execution directory created by PBS.

Table 3-1: Differences Between User Home and Job-specific Directory for Staging
and Execution

uestion Regarding Action . Job-specific
Q . 9 gnc ’ User Home Directory -SP
Requirement, or Setting Directory
Does PBS create a job-specific staging and execution |No Yes
directory?
User’s home directory must exist on execution Yes No
host(s)?
Standard out and standard error automatically deleted |No Yes
when gsub -k option is used?
When are staged-out files are deleted? Successfully staged-out files are Only after all are suc-
deleted; others go to “undelivered” | cessfully staged out
Staging and execution directory deleted after job fin- |No Yes
ishes?
What is job’s sandbox attribute set to? HOME or not set PRIVATE

PBS Professional 2020.1.1 User’ s Guide UG-31

Chapter 3 Job Input & Output Files

3.2.2 Using Job-specific Staging and Execution Directories

3.2.2.1 Setting the Job Staging and Execution Directory

The job’s sandbox attribute controls whether PBS creates a unique job-specific staging and execution directory for this
job. Ifthe job’s sandbox attribute is set to PRIVATE, PBS creates a unique staging and execution directory for the job.
If sandbox is unset, or is set to HOME, PBS uses your home directory as the job’s staging and execution directory. By
default, the sandbox attribute is not set.

You can set the sandbox attribute via gsub, or through a PBS directive. For example:
gsub -Wsandbox=PRIVATE
The job’s sandbox attribute cannot be altered while the job is executing.

Table 3-2: Effect of Job sandbox Attribute on Location of Staging and Execution

Directory
Job s sandbox
> Effect
attribute

not set Job’s staging and execution directory is your home directory

HOME Job’s staging and execution directory is your home directory

PRIVATE Job’s staging and execution directory is a job-specific directory created by PBS.
If the gsub -k option is used, output and error files are retained on the primary execution host
in the staging and execution directory. This directory is removed, along with all of its contents,
when the job finishes.

3.2.2.2 The jobdir Job Attribute and the PBS_JOBDIR Environment
Variable
The job’s jobdir attribute is a read-only attribute, set to the pathname of the job’s staging and execution directory on the

primary host. You can view this attribute by using gstat -£, only while the job is executing. The value of jobdir is
not retained if a job is rerun; it is undefined whether jobdir is visible or not when the job is not executing.

The environment variable PBS_JOBDIR is set to the pathname of the staging and execution directory on the primary
execution host. PBS_JOBDIR is added to the job script process, any job tasks, and the prologue and epilogue.

UG-32 PBS Professional 2020.1.1 User’ s Guide

Job Input & Output Files Chapter 3

3.2.3

Attributes and Environment Variables Affecting

Staging

The following attributes and environment variables affect staging and execution.

Table 3-3: Attributes and Environment Variables Affecting Staging

Job s Attribute or
Environment
Variable

Effect

sandbox attribute

Determines whether PBS uses user’s home directory or creates job-specific directory for
staging and execution. User-settable per job via gsub -W or through a PBS directive.

stagein attribute

Sets list of files or directories to be staged in. User-settable per job via gsub -W or
through a PBS directive.

stageout attribute

Sets list of files or directories to be staged out. User-settable per job via gsub -W or
through a PBS directive.

Keep_Files attribute

Determines whether output and/or error files remain on execution host. User-settable per
job via gsub -k or through a PBS directive. If the Keep_Files attribute is set to o and/
or e (output and/or error files remain in the staging and execution directory) and the job’s
sandbox attribute is set to PRIVATE, standard out and/or error files are removed, when
the staging directory is removed at job end along with its contents.

jobdir attribute

Set to pathname of staging and execution directory on primary execution host. Read-only;
viewable via gstat -f.

Remove_Files attribute

Specifies whether standard output and/or standard error files are automatically removed
(deleted) upon job completion.

PBS_JOBDIR environ-
ment variable

Set to pathname of staging and execution directory on primary execution host. Added to
environments of job script process, job tasks, and prologue and epilogue.

TMPDIR environment
variable

Location of job-specific scratch directory.

3.24

Specifying Files To Be Staged In or Staged Out

You can specify files to be staged in before the job runs and staged out after the job runs by setting the job’s stagein and
stageout attributes. You can use options to gsub, or directives in the job script:

qsub -Wstagein=<execution path>@<input file storage host>:<input file storage path>[,...] -Wstageout=<execution
path>@<output file storage host>:<output file storage path>/[,...]

#PBS -W stagein=<execution path>@<input file storage host>:<input file storage path>/,...]

#PBS -W stageout=<execution path>@<output file storage host>:<output file storage path>/,...]

The name execution path is the name of the file in the job’s staging and execution directory (on the execution host). The
execution path can be relative to the job’s staging and execution directory, or it can be an absolute path.

The ‘@’ character separates the execution specification from the storage specification.

The name storage path is the file name on the host specified by storage host. For stagein, this is the location where the
input files come from. For stageout, this is where the output files end up when the job is done. You must specify a host-
name. The name can be absolute, or it can be relative to your home directory on the machine named storage host.

PBS Professional 2020.1.1 User’ s Guide UG-33

Chapter 3 Job Input & Output Files

For stagein, the direction of travel is from storage path to execution path.
For stageout, the direction of travel is from execution path to storage path.

The following example shows how to use a directive to stagein a file named grid.dat located in the directory /u/
userl on the host called serverA. The staged-in file is copied to the staging and execution directory and given the name
datl. Since execution path is evaluated relative to the staging and execution directory, it is not necessary to specify a
full pathname for datal.

#PBS -W stagein=datal@serverA:/u/userl/grid.dat ...

To use the gsub option to stage in the file residing on myhost, in /Users/myhome/mydata/datal, calling it
input_datal in the staging and execution directory:

gsub -W stagein=input datal@myhost:/Users/myhome/mydata/datal

To stage more than one file or directory, use a comma-separated list of paths, and enclose the list in double quotes. For
example, to stage two files datal and dataz2 in:

gsub -W stagein="inputl@hostA:/myhome/datal, input2@hostA: /myhome/datal"

3.2.5 Caveats and Requirements for Staging

3.2.51 Linux: Staging and Special Characters

If you need to use special characters, such as parentheses, in your file or directory names, enclose that part of the path in
an extra layer of quotes. Syntax:

-W stageout="<execution path> @<storage host>:'<storage path>""

Example:

-W stageout="myoutfile@myhost:'/home/userl/outfile(1234)

3.25.2 Windows: Staging and Special Characters or Paths
3.2.5.2.i Special Characters

Under Windows, if your path contains special characters such as spaces, backslashes (\), colons (:), or drive letter specifi-
cations, enclose the staging specification in double quotes. For example, to stage the grid.dat file on drive D at hostB to
the execution file named “dat1” on drive C:

gsub -W stagein="datl@hostB:D\Documents and Settings\grid.dat"

3.2.5.2.ii Using UNC Paths

If you use a UNC path to stage in or out, the hostname is optional. If you use a non-UNC path, the hostname is required.

3.25.3 Path Names for Staging

e Itis advisable to use an absolute pathname for the storage path. Remember that the path to your home directory
may be different on each machine, and that when using sandbox = PRIVATE, you may or may not have a home
directory on all execution machines.

e Always use a relative pathname for execution path when the job’s staging and execution directory is created by PBS,
meaning when using a job-specific staging and execution directory, do not use an absolute path in execution
path.

UG-34 PBS Professional 2020.1.1 User’ s Guide

Job Input & Output Files Chapter 3

3.2.54 Required Permissions

You must have read permission for any files or directories that you will stage in, and write permission for any files or
directories that you will stage out.

3.2.5.5 Warning About Ampersand

You cannot use the ampersand (“&”) in any staging path. Staging will fail.

3.2.5.6 Interactive Jobs and File I/O

When an interactive job finishes, staged files may not have been copied back yet.

3.2.5.7 Copying Directories Into and Out Of the Staging and
Execution Directory

You can stage directories into and out of the staging and execution directory the same way you stage files. The storage
path and execution path for both stagein and stageout can be a directory. If you stagein or stageout a directory, PBS cop-
ies that directory along with all of its files and subdirectories. At the end of the job, the directory, including all files and
subdirectories, is deleted. This can create a problem if multiple jobs are using the same directory.

3.25.8 Wildcards In File Staging

You can use wildcards when staging files and directories, according to the following rules.
e The asterisk “*” matches one or more characters.

e The question mark “?”” matches a single character.

e All other characters match only themselves.

e Wildcards inside of quote marks are expanded.

e Wildcards cannot be used to match Linux files that begin with period “.” or Windows files that have the “SYSTEM”
or “HIDDEN” attributes.

e When using the gsub command line on Linux, you must prevent the shell from expanding wildcards. For some
shells, you can enclose the pathnames in double quotes. For some shells, you can use a backslash before the wild-
card.

e Wildcards can only be used in the source side of a staging specification. This means they can be used in the storage
path specification for stagein, and in the execution path specification for stageout.

* When staging using wildcards, the destination must be a directory. If the destination is not a directory, the result is
undefined. So for example, when staging out all . out files, you must specify a directory for storage path.

* Wildcards can only be used in the final path component, i.e. the basename.

e When wildcards are used during stagein, PBS will not automatically delete staged files at job end. Note that if PBS
created the staging and execution directory, that directory and all its contents are deleted at job end.

3.2.6 Examples of File Staging

Example 3-1: Stage out all files from the execution directory to a specific directory:
Linux

-W stageout=*@myworkstation:/user/projectl/casel

PBS Professional 2020.1.1 User’ s Guide UG-35

Chapter 3 Job Input & Output Files

Windows
-W stageout=*@mypc:E:\projectl\casel

Example 3-2: Stage out specific types of result files and disregard the scratch and other temporary files after the job ter-
minates. The result files that are interesting for this example end in '.dat':

Linux
-W stageout=*.dat@myworkstation:project3/data
Windows
-W stageout=*.dat@mypc:C:\project\data
Example 3-3: Stage in all files from an application data directory to a subdirectory:
Linux
-W stagein=jobarea@myworkstation:crashtestl/*
Windows
-W stagein=jobarealmypc:E:\crashtestl*
Example 3-4: Stage in data from files and directories matching “wing*””:
Linux
-W stagein=.@myworkstation:848/wing*
Windows
-W stagein=.@mypc:E:\flowcalc\wing*
Example 3-5: Stage in .bat and .dat files to job area:
Linux:
-W stagein=jobarea@myworkstation:/users/me/crashl.?at
Windows:

-W stagein=jobarea@myworkstation:C:\me\crashl.?at

3.2.6.1 Example of Using Job-specific Staging and Execution
Directories
In this example, you want the file “jay.fem” to be delivered to the job-specific staging and execution directory given in

PBS_JOBDIR, by being copied from the host “submithost”. The job script is executed in PBS_JOBDIR and “jay.out”
is staged out from PBS_JOBDIR to your home directory on the submission host (i.c., “storage host”):

gsub -Wsandbox=PRIVATE -Wstagein=jay.fem@submithost:jay.fem -Wstageout=jay.out@submithost:jay.out

UG-36 PBS Professional 2020.1.1 User’ s Guide

Job Input & Output Files Chapter 3

3.2.7 Summary of the Job Lifecycle

This is a summary of the steps performed by PBS. The steps are not necessarily performed in this order.

e On each execution host, if specified, PBS creates a job-specific staging and execution directory.

e PBS sets PBS_JOBDIR and the job’s jobdir attribute to the path of the job’s staging and execution directory.
* On each execution host allocated to the job, PBS creates a job-specific temporary directory.

e PBS sets the TMPDIR environment variable to the pathname of the temporary directory.

e Ifany errors occur during directory creation or the setting of variables, the job is requeued.

e PBS stages in any files or directories.

e The prologue is run on the primary execution host, with its current working directory set to PBS_HOME/mom_priv,
and with PBS_JOBDIR and TMPDIR set in its environment.

e The job is run as you on the primary execution host.
e The job’s associated tasks are run as you on the execution host(s).

e The epilogue is run on the primary execution host, with its current working directory set to the path of the job’s stag-
ing and execution directory, and with PBS_JOBDIR and TMPDIR set in its environment.

* PBS stages out any files or directories.
e PBS removes standard error and/or standard output according to the value of the job’s Remove_Files attribute.
e PBS removes any staged files or directories.

e PBS removes any job-specific staging and execution directories and their contents, and all TMPDIRs and their con-
tents.

e PBS writes the final job accounting record and purges any job information from the server’s database.

3.2.8 Detailed Description of Job Lifecycle
3.2.8.1 Creation of TMPDIR

For each host allocated to the job, PBS creates a job-specific temporary scratch directory for the job. If the temporary
scratch directory cannot be created, the job is aborted.

3.2.8.2 Choice of Staging and Execution Directories

If the job’s sandbox attribute is set to PRIVATE, PBS creates job-specific staging and execution directories for the job.
If the job’s sandbox attribute is set to HOME, or is unset, PBS uses your home directory for staging and execution.

3.2.8.2.i Job-specific Staging and Execution Directories

If the staging and execution directory cannot be created the job is aborted. If PBS fails to create a staging and execution
directory, see the system administrator.

You should not depend on any particular naming scheme for the new directories that PBS creates for staging and execu-
tion.

3.2.8.2.ii User Home Directory as Staging and Execution Directory

You must have a home directory on each execution host. The absence of your home directory is an error and causes the
job to be aborted.

PBS Professional 2020.1.1 User’ s Guide UG-37

Chapter 3 Job Input & Output Files

3.2.8.3 Setting Environment Variables and Attributes

PBS sets PBS_JOBDIR and the job’s jobdir attribute to the pathname of the staging and execution directory. The
TMPDIR environment variable is set to the pathname of the job-specific temporary scratch directory.

3.2.84 Staging Files Into Staging and Execution Directories

PBS evaluates execution path and storage path relative to the staging and execution directory given in
PBS_JOBDIR, whether this directory is your home directory or a job-specific directory created by PBS. PBS copies the
specified files and/or directories to the job’s staging and execution directory.

3.2.8.5 Running the Prologue

The MoM’s prologue is run on the primary host as root, with the current working directory set to PBS_HOME /
mom_priv, and with PBS_JOBDIR and TMPDIR set in its environment.

3.2.8.6 Job Execution

PBS runs the job script on the primary host as you. PBS also runs any tasks created by the job as you. The job script and
tasks are executed with their current working directory set to the job's staging and execution directory, and with
PBS_JOBDIR and TMPDIR set in their environment.

3.2.8.7 Standard Out and Standard Error

The job's stdout and stderr files are created directly in the job's staging and execution directory on the primary exe-
cution host.

3.2.8.7.i Job-specific Staging and Execution Directories

If the gsub -k option is used, the stdout and stderr files will not be automatically copied out of the staging and
execution directory at job end - they will be deleted when the directory is automatically removed.

3.2.8.7.ii User Home Directory as Staging and Execution Directory

If the -k option to gsub is used, standard out and/or standard error files are retained on the primary execution host
instead of being returned to the submission host, and are not deleted after job end.

3.2.8.8 Running the Epilogue

PBS runs the epilogue on the primary host as root. The epilogue is executed with its current working directory set to the
job's staging and execution directory, and with PBS_JOBDIR and TMPDIR set in its environment.

3.2.8.9 Staging Files Out and Removing Execution Directory

When PBS stages files out, it evaluates execution path and storage path relative to PBS_JOBDIR. Files that
cannot be staged out are saved in PBS_HOME /undelivered.

3.2.8.9.i Job-specific Staging and Execution Directories

If PBS created job-specific staging and execution directories for the job, it cleans up at the end of the job. The staging
and execution directory and all of its contents are removed, on all execution hosts.

UG-38 PBS Professional 2020.1.1 User’ s Guide

Job Input & Output Files Chapter 3

3.2.8.10 Removing TMPDIRs and Files

PBS removes all TMPDIRs, along with their contents. If Remove_Files specifies output and/or error files, these files
are removed.

3.2.9 Staging with Job Arrays

File staging is supported for job arrays. See “File Staging for Job Arrays” on page 153.

3.2.10 Stagein and Stageout Failure

3.2.10.1 File Stagein Failure

When stagein fails, the job is placed in a 30-minute wait to allow you time to fix the problem. Typically this is a missing
file or a network outage. Email is sent to the job owner when the problem is detected. Once the problem has been
resolved, the job owner or a PBS Operator may remove the wait by resetting the time after which the job is eligible to be
run via the -a option to galter. The server will update the job’s comment with information about why the job was put
in the wait state. When the job is eligible to run, it may run on different vnodes.

3.2.10.2 File Stageout Failure

When stageout encounters an error, there are three retries. PBS waits 1 second and tries again, then waits 11 seconds and
tries a third time, then finally waits another 21 seconds and tries a fourth time. Email is sent to the job owner if all
attempts fail. Files that cannot be staged out are saved in PBS_HOME /undelivered. See section 3.3.8.1, “Non-deliv-
ery of Output”, on page 46.

3.3 Managing Output and Error Files

3.3.1 Default Behavior For Output and Error Files

By default, PBS copies the standard output (stdout) and standard error (stderr) files back to $PBS_O_WORKDIR
on the submission host when a job finishes. When gsub is run, it sets $PBS_O_WORKDIR to the current working
directory where the gsub command is executed. This means that if you want your job’s stdout and stderr files to
be delivered to your submission directory, you do not need to do anything.

The following options to the gsub command control where stdout and stderr are created and whether and where
they are copied when the job is finished:

sandbox

By default, PBS runs the job script in the owner’s home directory. If sandbox is set to PRIVATE, PBS creates
a job-specific execution directory, and runs the job script there. See section 3.2.2.1, “Setting the Job Staging
and Execution Directory”, on page 32.

Specifies whether and which of stdout and stderr is retained in the job’s execution directory. When set,
this option overrides o and e. See section 3.3.5, “Keeping Output and Error Files on Execution Host”, on page
44.

You can also specify that output and/or error files are written directly to the final destination. See section 3.3.6
“Writing Files Directly to Final Destination”, on page 45.

PBS Professional 2020.1.1 User’ s Guide UG-39

Chapter 3 Job Input & Output Files

(0]
Specifies destination for stdout. Overridden by k when k is set. See section 3.3.2, “Paths for Output and
Error Files”, on page 42.

e
Specifies destination for stderr. Overridden by k when k is set. See section 3.3.2, “Paths for Output and
Error Files”, on page 42.

R

Specifies whether standard output and/or standard error are deleted upon job completion. See section 3.3.3,
“Avoiding Creation of stdout and/or stderr”, on page 43.

UG-40 PBS Professional 2020.1.1 User’ s Guide

Job Input & Output Files

Chapter 3

The following table shows how these options control creation and copying of stdout and stderr:

Table 3-4: How k, sandbox, o, and e Options to gsub Affect stdout and stderr

can reach it

-k Where stdout, Where stdout, stderr Are
sandbox| (0e, |-e,-0| -R | -kd)
€0, 08) stderr Are Created Copied
HOME or |unset |unset |unset |unset |PBS HOME/spool PBS_O_WORKDIR, which is job
unset submission directory
HOME or |unset <path>|unset |unset |PBS_ HOME/spool Destination specified in —o <path>
unset and/or -e <path>
HOME or |e, o, unset |unset [unset |Job submitter’s home direc- |Not copied; left in submitter’s home
unset eo, oe tory on execution host directory on execution host, and not
deleted
HOME or |e, o, <path>|unset |unset |Job submitter’s home direc- |Not copied; left in submitter’s home
unset eo, oe tory on execution host directory on execution host, and not
deleted
PRIVATE |unset unset |unset |unset |Job-specific execution direc- | PBS_O_WORKDIR, which is job
tory created by PBS submission directory
PRIVATE |unset <path>|unset |unset |Job-specific execution direc- | Destination specified in —-o <path>
tory created by PBS and/or -e <path>
PRIVATE |e, o, unset |unset |unset |Job-specific execution direc- | Not copied; left in job-specific execu-
eo, oe tory created by PBS tion directory; deleted when job-spe-
cific execution directory is deleted
PRIVATE |e, o, <path>|unset |unset |Job-specific execution direc- | Not copied; left in job-specific execu-
eo, oe tory created by PBS tion directory; deleted when job-spe-
cific execution directory is deleted
any any any -R elo | any Deleted regardless of where | Does not exist, so not copied
created
any any any unset |-k d Final destination, if MoM Does not exist, so not copied

* You can specify a path for stdout and/or stderr: see section 3.3.2, “Paths for Output and Error Files”, on page

4.

* You can merge stdout and stderr: see section 3.3.4, “Merging Output and Error Files”, on page 43.

* You can prevent creation of stdout and/or stderr: see section 3.3.3, “Avoiding Creation of stdout and/or stderr”,
on page 43.

¢ You can choose whether to retain stdout and/or stderr on the execution host: see section 3.3.5. “Keeping Output
and Error Files on Execution Host”, on page 44.

* You can specify that output and/or error files are written directly to the final destination. See section 3.3.6, “Writing
Files Directly to Final Destination”, on page 45.

* You can specify that output and/or error files are deleted when the job finishes. See section 3.3.3, “Avoiding Cre-
ation of stdout and/or stderr”, on page 43.

PBS Professional 2020.1.1 User’ s Guide

UG-41

Chapter 3 Job Input & Output Files

3.3.2 Paths for Output and Error Files
3.3.2.1 Default Paths for Output and Error Files

By default, PBS names the output and error files for your job using the job name and the job’s sequence number. The
output file name is specified in the Output_Path job attribute, and the error file name is specified in the Error_Path job
attribute.

The default output filename has this format:
<job name>.o<sequence number>

The default error filename has this format:
<job name>.e<sequence number>

The job name, if not specified, defaults to the script name. For example, if the job ID is 1234 .exampleserver and
the script name is “myscript”, the error file is named myscript.el234. If you specify a name for your job, the
script name is replaced with the job name. For example, if you name your job “fixgamma”, the output file is named
fixgamma.ol234.

For details on naming your job, see section 2.5.2, “Specifying Job Name”, on page 27.

3.3.2.2 Specifying Paths

You can specify the path and name for the output and error files for each job, by setting the value for the Output_Path
and Error_Path job attributes. You can set these attributes using the following methods:

e Usethe -0 <output path>and -e <error path> options to gsub

* Use #PBS Output Path=<path>and #PBS Error Path=<path> directives in the job script
The path argument has the following form:

[<hostname>:]<pathname>

where hostname is the name of a host and pathname is the path name on that host.

You can specify relative or absolute paths. If you specify only a file name, it is assumed to be relative to your home direc-
tory. Do not use variables in the path.

The following examples show how you can specify paths:

#PBS -0 /u/userl/myOutputFile
#PBS -e /u/userl/myErrorFile

gsub -o myOutputFile my job

gsub -o /u/userl/myOutputFile my job

gsub -o myWorkstation:/u/userl/myOutputFile my job
gsub -e myErrorFile my job

gsub -e /u/userl/myErrorFile my job

gsub -e myWorkstation:/u/userl/myErrorFile my job

UG-42 PBS Professional 2020.1.1 User’ s Guide

Job Input & Output Files Chapter 3

3.3.23 Specifying Paths from Windows Hosts
3.3.2.3.i Using Special Characters in Paths

If you submit your job from a Windows host, you may end up using special characters such as spaces, backslashes (“\”),

€,

and colons (“:”) for specifying pathnames, and you may need drive letter specifications. The following examples are
allowed:

gsub -o \temp\my out job.scr
gsub -e "myhost:e:\Documents and Settings\user\Desktop\output"

The error output of the example job is to be copied onto the e : drive on myhost using the path "\Documents and
Settings\user\Desktop\output".

3.3.2.3.ii Using UNC Paths

If you use a UNC path for output or error files, the hostname is optional. If you use a non-UNC path, the hostname is
required.

3.3.24 Caveats for Paths

Enclose arguments to gsub in quotes if the arguments contain spaces.

3.3.3 Avoiding Creation of stdout and/or stderr

For each job, PBS always creates the job’s output and error files. The location where files are created is listed in Table 3-
4, “How k, sandbox, 0, and e Options to gsub Affect stdout and stderr,” on page 41.

If you do not want stdout and/or stderr, you can do either of the following:

e Specify that PBS deletes the file(s) when the job finishes, using the -R option to gsub or galter. The -R option
takes 0, e, eo, or oe as sub-options. For example, to have PBS delete the error file:

gsub -R e job.sh
* Redirect them to /dev/null within the job script. For example, to redirect stdout and stderr to /dev/null:
exec >&/dev/null 1>&2

e Standard output and standard error are normally written to a location such as /var/spool, then copied to their final
location. To avoid creating these files at all, and to avoid copying them, use direct write to send them to /dev/null:

gsub -koed -o /dev/null -e /dev/null

Your administrator must also set up the MoM’s configuration file to support this.

3.3.4 Merging Output and Error Files

By default, PBS creates separate standard output and standard error files for each job. You can specify that stdout and
stderr are to be joined by setting the job’s Join_Path attribute. The default for the attribute is n, meaning that no join-
ing takes place. You can set the attribute using the following methods:

e Usegsub -j <joining option>
e Use#PBS Join Path=<joining option>
You can specify one of the following joining options:

oe

Standard output and standard error are merged, intermixed, into a single stream, which becomes standard out-
put.

PBS Professional 2020.1.1 User’ s Guide UuG-43

Chapter 3 Job Input & Output Files

eo

Standard output and standard error are merged, intermixed, into a single stream, which becomes standard error.

Standard output and standard error are not merged.
For example, to merge standard output and standard error for my job into standard output:
gsub -j oe my job
#PBS -j oe

3.3.5 Keeping Output and Error Files on Execution Host

By default, PBS copies stdout and stderr to the job’s submission directory. You can specify that PBS keeps std-
out, stderr, or both in the job’s execution directory on the execution host. This behavior is controlled by the job’s
Keep_Files attribute. You can set this attribute to one of the following values:

e
PBS keeps stderr in the job’s staging and execution directory on the primary execution host.
(0}
PBS keeps stdout in the job’s staging and execution directory on the primary execution host.
€o, oe
PBS keeps both standard output and standard error on the primary execution host, in the job's staging and execu-
tion directory.
n
PBS does not keep either file on the execution host.
d

PBS writes both stdout and stderr to their final destinations. Overrides o and e options. See section 3.3.6,
“Writing Files Directly to Final Destination”, on page 45.

The default value for Keep_Files is “n”.

You can set the value of the Keep_Files job attribute using the following methods:

e Usegsub -k <keep option>

* Use #PBS Keep Files=<keep option>

For example, you can use either of the following to keep both standard output and standard error on the execution host:

gsub -k oe my job
#PBS -k oe

3.3.51 Caveats for Keeping Files on Execution Host

e When a job finishes, its job-specific execution directory, and all files in that directory, are deleted. If you specified
that stdout and/or stderr should be kept on the execution host, any files you specified are deleted as well.

e The gsub -k option overrides the -o and -e options. For example, if you specify gsub -k o -o <path>,
stdout is kept on the execution host, and is not copied to the path you specified.

UuG-44 PBS Professional 2020.1.1 User’ s Guide

Job Input & Output Files Chapter 3

3.3.6 Writing Files Directly to Final Destination

If the MoM on the primary execution host can reach the final destination, she can write the job’s standard output and
standard error files to that destination. To be reachable, the final destination host and path must either be on the execu-
tion host, or be mapped from the primary execution host via the Susecp directive in the MoM configuration file. To
specify that standard output and/or standard error should be written directly to their final destinations, use the d sub-
option to the -k option to gsub or galter.

For example, to directly write both output and error to their final destinations:
gsub -koed job.sh
To directly write output to its final destination, and let error go through normal spooling and staging:

gsub -kod job.sh

3.3.7 Changing Linux Job umask

On Linux, whenever your job copies or creates a file or directory on the execution host, MoM uses umask to determine
the permissions for the file or directory. If you do not specify a value for umask, MoM uses the system default. You can
specify a value using the following methods:

e Usegsub -W umask=<value>
e Use #PBS umask=<value>

This applies when staging or copying files or directories to the execution host, or writing stdout or stderr on the
execution host.

In the following example, we set umask to 022, to have files created with write permission for owner only. The desired
permissions are —rw-r—-r—-,

gsub -W umask=022 my job
#PBS -W umask=022

3.3.71 Caveats

This feature does not apply to Windows.

3.3.8 Troubleshooting File Delivery

File delivery is handled by MoM on the execution host. For a description of how file delivery works, see "Setting File
Transfer Mechanism" on page 549 in the PBS Professional Administrator’s Guide.

For troubleshooting file delivery, see "Troubleshooting File Transfer" on page 554 in the PBS Professional Administra-
tor’s Guide.

PBS Professional 2020.1.1 User’ s Guide UuG-45

Chapter 3 Job Input & Output Files

3.3.8.1 Non-delivery of Output

If the output of a job cannot be delivered to you, it is saved in a special directory named PBS_HOME/undelivered and
mail is sent to you. The typical causes of non-delivery are:

1. The destination host is not trusted and you do not have a .rhosts file.
An improper path was specified.
A directory in the specified destination path is not writable.

2
3
4. Your .cshrc on the destination host generates output when executed.
5. The path specified by PBS_SCP in pbs . conf is incorrect.

6

The PBS_HOME/spool directory on the execution host does not have the correct permissions. This directory must
have mode 1777 drwxrwxrwxt (on Linux) or “Full Control” for “Everyone” (on Windows).

3.3.9 Caveats for Output and Error Files

3.3.9.1 Retaining Files on Execution Host

When PBS creates a job-specific staging and execution directory and you use the -k option to gsub or you specify 0 and/
or e in the Keep_Files attribute, the files you requested kept on the execution host are deleted when the job-specific
staging and execution directory is deleted at the end of the job.

3.3.9.2 Standard Output and Error Appended When Job is Rerun

If your job runs and writes to stdout or stderr, and then is rerun, meaning that another job with the same name is run,
PBS appends the stdout of the second run to that of the first, and appends the stderr of the second run to that of the
first.

3.3.9.3 Windows Mapped Drives and PBS

In Windows, when you map a drive, it is mapped locally to your session. The mapped drive cannot be seen by other pro-
cesses outside of your session. A drive mapped on one session cannot be un-mapped in another session even if the user
is the same. This has implications for running jobs under PBS. Specifically if you map a drive, chdir to it, and submit a
job from that location, the vnode that executes the job may not be able to deliver the files back to the same location from
which you issued gsub. The workaround is to tell PBS to deliver the files to a local, non-mapped, directory. Use the “~
o” or “~e” options to gsub to specify the directory location for the job output and error files. For details see section
3.3.2, “Paths for Output and Error Files”, on page 42.

3.3.94 Harmless csh Error Message

If your login shell is csh the following message may appear in the standard output of a job:
Warning: no access to tty, thus no job control in this shell

This message is produced by many csh versions when the shell determines that its input is not a terminal. Short of mod-
ifying csh, there is no way to eliminate the message. Fortunately, it is just an informative message and has no effect on
the job.

3.3.9.5 Interactive Jobs and File I/O

When an interactive job finishes, stdout and/or stderr may not have been copied back yet.

UG-46 PBS Professional 2020.1.1 User’ s Guide

Job Input & Output Files Chapter 3

3.3.9.6 Write Permissions Required

* You must have write permission for any directory where you will copy stdout or stderr.
* Root must be able to write in PBS_HOME/spool.

PBS Professional 2020.1.1 User’ s Guide uG-47

Chapter 3 Job Input & Output Files

UG-48 PBS Professional 2020.1.1 User’ s Guide

4

Allocating Resources & Placing
Jobs

41 Whatis a Vnode?

A virtual node, or vnode, is an abstract object representing a set of resources which form a usable part of a machine. This
could be an entire host, or a nodeboard or a blade. A single host can be made up of multiple vnodes.

A host is any computer. Execution hosts used to be called nodes, and are still often called nodes outside of the PBS doc-
umentation. PBS views hosts as being composed of one or more vnodes.

PBS manages and schedules each vnode independently. Jobs run on one or more vnodes. Each vnode has its own set of
attributes; see “Vnode Attributes” on page 320 of the PBS Professional Reference Guide.

4.1.1 Deprecated Vnode Types

All vnodes are treated alike, and are treated the same as what were once called “time-shared nodes”. The types “time-
shared” and “cluster” are deprecated. The :ts suffix is deprecated. It is silently ignored, and not preserved during
rewrite.

The vnode attribute ntype was only used to distinguish between PBS and Globus vnodes. Globus can still send jobs to
PBS, but PBS no longer supports sending jobs to Globus. The ntype attribute is read-only.

4.2 PBS Resources

4.2.1 Introduction to PBS Resources

In this section, "Introduction to PBS Resources", we will briefly cover the basics of PBS resources. For a thorough dis-
cussion, see "Using PBS Resources" on page 229 in the PBS Professional Administrator’s Guide, especially sections 5.4
and 5.5. For a complete description of each PBS resource, see Chapter 5, "List of Built-in Resources", on page 259.

PBS resources represent things such as CPUs, memory, application licenses, switches, scratch space, and time. They can
also represent whether or not something is true, for example, whether a machine is dedicated to a particular project.

PBS provides a set of built-in resources, and allows the administrator to define additional custom resources. Custom
resources are used for application licenses, scratch space, etc., and are defined by the administrator. Custom resources
are used the same way built-in resources are used. PBS supplies the following types of resources:

Boolean
Name of Boolean resource is a string.
Values:
TRUE, True, true, T, t, Y, y, 1
FALSE, False, false, F, f, N, n, 0

PBS Professional 2020.1.1 User’ s Guide UG-49

Chapter 4 Allocating Resources & Placing Jobs

Duration
A period of time, expressed either as

An integer whose units are seconds
or

[[hours: [minutes: [seconds[.milliseconds]
in the form:

[[HH:]MM:]SS[. milliseconds]
Milliseconds are rounded to the nearest second.

Float
Floating point. Allowable values: [+-] 0-9 [[0-9] ...][.][[0-9] ...]
Long
Long integer. Allowable values: 0-9 [[0-9] ...], and + and -
<queue name>@<server name>
Size
Number of bytes or words. The size of a word is 64 bits.
Format: <integer>[<suffix>]

where suffix can be one of the following:

Table 4-1: Size in Bytes

Suffix Meaning Size
borw Bytes or words 1
kb or kw Kilobytes or kilowords 2 to the 10th, or 1024
mb or mw Megabytes or megawords 2 to the 20th, or 1,048,576
gb or gw Gigabytes or gigawords 2 to the 30th, or 1,073,741,824
tb or tw Terabytes or terawords 2 to the 40th, or 1024 gigabytes
pb or pw Petabytes or petawords 2 to the 50th, or 1,048,576 gigabytes

Default: bytes
Note that a scheduler rounds all resources of type Size up to the nearest kb.
String
Any character, including the space character.
Only one of the two types of quote characters, " or ', may appear in any given value.
Values:[a-zA-Z0-9][[- a-zA-Z0-9!"#$% () *+,-./:;<=>2@[\]1"_"{|}~]..]

String resource values are case-sensitive. No limit on length.

UG-50 PBS Professional 2020.1.1 User’ s Guide

Allocating Resources & Placing Jobs Chapter 4

String Array
Comma-separated list of strings.
Strings in string_array may not contain commas. No limit on length.
Python type is Str.

A string array resource with one value works exactly like a string resource.

See “Resources Built Into PBS” on page 265 of the PBS Professional Reference Guide for a listing of built-in resources.

For some systems, PBS creates specific custom resources.

The administrator can specify which resources are available at the server, each queue, and each vnode. Resources
defined at the queue or server level apply to an entire job. Resources defined at the vnode level apply only to the part of
the job running on that vnode.

Jobs can request resources. The scheduler matches requested resources with available resources, according to rules
defined by the administrator. PBS always places jobs where it finds the resources requested by the job. PBS will not
place a job where that job would use more resources than PBS thinks are available. For example, if you have two jobs,
each requesting 1 CPU, and you have one vnode with 1 CPU, PBS will run only one job at a time on the vnode.

PBS can enforce limits on resource usage by jobs; see section 4.5, “Limits on Resource Usage”, on page 61.

4.2.2 Glossary

Chunk

A set of resources allocated as a unit to a job. Specified inside a selection directive. All parts of a chunk come
from the same host. In a typical MPI (Message-Passing Interface) job, there is one chunk per MPI process.

Chunk-level resource, host-level resource

A resource that is available at the host level, for example, CPUs or memory. Chunk resources are requested
inside of a selection statement. The resources of a chunk are to be applied to the portion of the job running in
that chunk.

Chunk resources are requested inside a select statement.
Job-wide resource, server resource, queue resource

A job-wide resource, also called a server-level or queue-level resource, is a resource that is available to the
entire job at the server or queue.

A job-wide resource is available to be consumed or matched at the server or queue if you set the server or queue
resources_available.<resource name> attribute to the available or matching value. For example, you can
define a custom resource called FloatingLicenses and set the server’s resources_available.FloatingLi-
censes attribute to the number of available floating licenses.

Examples of job-wide resources are shared scratch space, application licenses, or walltime.

A job can request a job-wide resource for the entire job, but not for individual chunks.

4.3 Requesting Resources

Your job can request resources that apply to the entire job, or resources that apply to job chunks. For example, if your
entire job needs an application license, your job can request one job-wide license. However, if one job process needs two
CPUs and another needs 8 CPUs, your job can request two chunks, one with two CPUs and one with eight CPUs. Your
job cannot request the same resource in a job-wide request and a chunk-level request.

PBS Professional 2020.1.1 User’ s Guide UG-51

Chapter 4 Allocating Resources & Placing Jobs

PBS supplies resources such as walltime that can be used only as job-wide resources, and other resources, such as ncpus
and mem, that can be used only as chunk resources. A resource is either job-wide or chunk-level, but not both. The
description of each resource tells you which way to use the resource; see “List of Built-in Resources” on page 259 of the
PBS Professional Reference Guide.

We will cover the details of requesting resources in section 4.3.2, “Requesting Job-wide Resources”, on page 52 and sec-
tion 4.3.3, “Requesting Resources in Chunks”, on page 53.

4.3.1 Quick Summary of Requesting Resources

Job-wide resources are requested in <resource neme>=<value> pairs. You can request job-wide resources using any of
the following:

e Thegsub -1 <resource name>=<value> option
You can request multiple resources, using either format:

-1 <resource>=<value>, <resource>=<value>

-1 <resource>=<value> -1 <resource>=<value>
e One or more #PBS -1 <resource name>=<value> directives

Chunk resources are requested in chunk specifications in a select statement. You can request chunk resources using any
of the following:

e Thegsub -1 select=[N:][<chunk specification>][+[N:]<chunk specification>] option
e A#PBS -1 select=[N:][<chunk specification>][+[N:]<chunk specification>] directive
Format for requesting both job-wide and chunk resources:

gsub ... (non-resource portion of job)
-1 <resource>=<value> (this is the job-wide request)
-1 select=<chunk> [+<chunk>] (this is the selection statement)

PBS supplies several commands that you can use to request resources or alter resource requests:
e The gsub command (both via command-line and in PBS directives)
e The pbs_rsub command (via command-line only)

* The galter command (via command-line only)

4.3.2 Requesting Job-wide Resources

Your job can request resources that apply to the entire job in job-wide resource requests. A job-wide resource is
designed to be used by the entire job, and is available at the server or a queue, but not at the host level. Job-wide
resources are used for requesting floating application licenses or other resources not tied to specific vnodes, such as cput
and walltime.

Job-wide resources are requested outside of a selection statement, in this form:
-1 <resource name>=<value> [, <resource name>=<value> ...]

A resource request “outside of a selection statement” means that the resource request comes after “~1", but not after “~
lselect=". In other words, you cannot request a job-wide resource in chunks.

For example, to request one hour of walltime for a job:
-l walltime=1:00:00
You can request job-wide resources using any of the following:

e Thegsub -1 <resource name>=<value> option

UG-52 PBS Professional 2020.1.1 User’ s Guide

Allocating Resources & Placing Jobs Chapter 4

You can request multiple resources, using either format:

-1 <resource>=<value>, <resource>=<value>

-1 <resource>=<value> -1 <resource>=<value>

e One or more #PBS -1 <resource name>=<value> directives

4.3.3 Requesting Resources in Chunks

A chunk specifies the value of each resource in a set of resources which are to be allocated as a unit to a job. It is the
smallest set of resources to be allocated to a job. All of a chunk is taken from a single host. One chunk may be broken
across vnodes, but all participating vnodes must be from the same host.

Your job can request chunk resources, which are resources that apply to the host-level parts of the job. Host-level
resources can only be requested as part of a chunk. Server or queue resources cannot be requested as part of a chunk. A
chunk resource is used by the part of the job running on that chunk, and is available at the host level. Chunks are used for
requesting host-related resources such as CPUs, memory, and architecture.

Chunk resources are requested inside a select statement. A select statement has this form:
-l select=[N:]<chunk>[+[N:]<chunk> ...]
Now, we’ll explain the details. A single chunk is requested using this form:
-1 select=<resource name>=<value>[:<resource name>=<value>...]
For example, one chunk might have 2 CPUs and 4GB of memory:
-1 select=ncpus=2:mem=4gb
To request multiples of a chunk, prefix the chunk specification by the number of chunks:
-1 select=[<number of chunks>]<chunk specification>
For example, to request six of the previous chunk:
-1 select=6:ncpus=2:mem=4gb
If you don’t specify N, the number of chunks, it is taken to be 7.
To request different chunks, concatenate the chunks using the plus sign (“+”):
-1 select=[<number of chunks>]<chunk specification>+[<number of chunks>]<chunk specification>

For example, to request two sets of chunks where one set of 6 chunks has 2 CPUs per chunk, and one set of 3 chunks has
8 CPUs per chunk, and both sets have 4GB of memory per chunk:

-1 select=6:ncpus=2:mem=4gb+3:ncpus=8 :mem=4GB
No spaces are allowed between chunks.
You must specify all your chunks in a single select statement.
You can request chunk resources using any of the following:
e Thegsub -1 select=[N:][<chunk specification>][+[N:]<chunk specification>] option

e A#PBS -1 select=[N:][<chunk specification>][+[N:]<chunk specification>] directive

PBS Professional 2020.1.1 User’ s Guide UG-53

Chapter 4 Allocating Resources & Placing Jobs

4.3.4 Requesting Boolean Resources

A resource request can specify whether a Boolean resource should be True or False.

Example 4-1: Some vnodes have green=True and some have red=True, and you want to request two vnodes, each with
one CPU, all green and no red:

-1 select=2:green=true:red=false:ncpus=1

Example 4-2: This job script snippet has a job-wide request for walltime and a chunk request for CPUs and memory
where the Boolean resource HasMyApp is True:

#PBS -1 walltime=1:00:00
#PBS -1 select=ncpus=4:mem=400mb:HasMyApp=true

Keep in mind the difference between requesting a vnode-level boolean and a job-wide boolean:
gsub -1 select=1:green=True

requests a vnode with green set to True. However,
gsub -1 green=True

requests green set to True on the server and/or queue.

4.3.5 Requesting Application Licenses

Application licenses are managed as resources defined by your PBS administrator. PBS doesn't actually check out the
licenses; the application being run inside the job's session does that.

4.3.5.1 Requesting Floating Application Licenses

A site-wide floating license is typically configured as a server-level, job-wide resource.
To request a job-wide application license called AppF, use:
gsub -1 AppF=<number of licenses> <other gsub arguments>
If only certain hosts can run the application, they will typically have a host-level Boolean resource set to True.

The job-wide resource AppF is a numerical resource indicating the number of licenses available at the site. The host-
level Boolean resource haveAppF indicates whether a given host can run the application. To request the application
license and the vnodes on which to run the application:

gsub -1 AppF=<number of licenses> <other gsub arguments>
-1 select=haveAppF=True

PBS queries the license server to find out how many floating licenses are available at the beginning of each scheduling
cycle. PBS doesn't actually check out the licenses, the application being run inside the job's session does that.

4.3.5.2 Requesting Node-locked Application Licenses

Node-locked application licenses are available at the vnode(s) that are licensed for the application. These are host-level
(chunk) resources that are requested inside of a select statement.

4.3.5.2.i Requesting Per-host Node-locked Application Licenses

Per-host node-locked application licenses are typically configured as a Boolean resource that indicates whether or not the
required license is available at that host.

UG-54 PBS Professional 2020.1.1 User’ s Guide

Allocating Resources & Placing Jobs Chapter 4

When requesting Boolean-valued per-host node-locked licenses, request one per host. Format:
qsub -l select=<Boolean resource name>=true:<rest of chunk specification>

Example 4-3: The Boolean resource runsAppA specifies whether this vnode has the necessary license. To request a host
with a per-host node-locked license for AppA in one chunk:

gsub -1 select=1:runsAppA=1 <job script>

4.3.5.2.ii Requesting Per-use Node-locked Application Licenses

Per-use node-locked application licenses are typically configured as a consumable numeric resource so that the host(s)
that run the application have the number of licenses that can be used at one time.

When requesting numerical per-use node-locked licenses, request the required number of licenses for each host:
qsub -l select=<consumable resource name>=<required amount>:<rest of chunk specification>

Example 4-4: The consumable resource named AppB indicates the number of available per-use application licenses on a
host. To request a host with a per-use node-locked license for AppB, where you’ll run one instance of AppB on two
CPUs in one chunk:

gsub -1 select=1:ncpus=2:AppB=1

4.3.5.2.iii Requesting Per-CPU Node-locked Application Licenses

Per-CPU node-locked licenses are typically arranged so that the host has one license for each licensed CPU. The PBS
administrator configures a consumable numerical resource indicating the number of available licenses.

You must request one license for each CPU. When requesting numerical per-use node-locked licenses, request the
required number of licenses for each host:

qsub -l select=<per-CPU resource name>=<required amount>:<rest of chunk specification>

Example 4-5: The numerical consumable resource named AppC indicates the number of available per-CPU licenses. To
request a host with two per-CPU node-locked licenses for AppC, where you’ll run a job using two CPUs in one
chunk:

gsub -1 select=1:ncpus=2:AppC=2

4.3.6 Requesting Scratch Space

Scratch space on a machine is configured as a host-level dynamic resource. Ask your administrator for the name of the
scratch space resource.

When requesting scratch space, include the resource in your chunk request:
-1 select=<scratch resource name>=<amount of scratch needed>:<rest of chunk specification>

Example 4-6: Your administrator has named the scratch resource “dynscratch”. To request 10MB of scratch space in
one chunk:

-1 select=1:ncpus=N:dynscratch=10MB

4.3.7 Requesting GPUs

Your PBS job can request GPUs. How you request GPUs depends on whether PBS uses cgroups to manage GPUs; check
with your administrator.

PBS Professional 2020.1.1 User’ s Guide UG-55

Chapter 4 Allocating Resources & Placing Jobs

4.3.71 Requesting GPUs Managed via Cgroups

Recommended: On Linux only, PBS can be configured to use cgroups to fence GPUs off, so that when your job requests
GPUs it automatically gets exclusive use of its GPUs. You don’t have to request exclusivity. When PBS uses cgroups to
manage GPUs, you request the number of GPUs you want via the ngpus resource:

qsub - select=ngpus=<value>:<rest of chunk specification>

When GPUs are managed via cgroups, jobs requesting memory will use that amount both for physical memory and for
swap. For example, a job that requests 20GB and uses 16GB but reads a 50GB file can only swap 4GB at a time. Soifa
job requires 32GB of application memory but also requires SGB of private file cache to perform adequately, then it needs
to request 37GB.

4.3.7.2 Requesting GPUs Not Managed via Cgroups

On Windows or Linux, when PBS is not using cgroups to manage GPUs, your administrator can configure PBS to sup-
port any of the following:

e (“Basic GPU scheduling”) Job uses non-specific GPUs and exclusive use of a node

e (“Advanced GPU scheduling”) Job uses non-specific GPUs and shared use of a node

e (“Advanced GPU scheduling”) Job uses specific GPUs and either shared or exclusive use of a node

4.3.7.2.i Binding to GPUs

PBS Professional allocates GPUs, but does not bind jobs to any particular GPU; the application itself, or the CUDA
library, is responsible for the actual binding.

4.3.7.2.ii Requesting Non-specific GPUs and Exclusive Use of Node

When your site uses “basic GPU scheduling”, if your job needs GPUs, but does not require specific GPUs, and can
request exclusive use of GPU nodes, you can request GPUs the same way you request CPUs.

Your administrator can set up a resource to represent the GPUs on a node. We recommend that the GPU resource is
called ngpus.

When requesting GPUs in this manner, your job should request exclusive use of the node to prevent other jobs being
scheduled on its GPUs.

qsub -l select=ngpus=<value>:<rest of chunk specification> -Iplace=excl

Example 4-7: To submit the job named “my_gpu_job”, requesting one node with two GPUs and one CPU, and exclu-
sive use of the node:

gsub -lselect=1:ncpus=1:ngpus=2 -lplace=excl my gpu job
It is up to the application or CUDA to bind the GPUs to the application processes.

4.3.7 .2.iii Requesting Non-specific GPUs and Shared Use of Node

When your site uses “advanced GPU scheduling”, your administrator can configure PBS to allow your job to use non-
specific GPUs on a node while sharing GPU nodes. In this case, your administrator puts each GPU in its own vnode.

Your administrator can configure a resource to represent GPUs. We recommend that the GPU resource is called ngpus.

Your administrator can configure each GPU vnode so it has a resource containing the device number of the GPU. We
recommend that this resource is called gpu_id.

Example 4-8: To submit the job named “my_gpu_job”, requesting two GPUs and one CPU, and shared use of the node:
gsub -lselect=1:ncpus=1:ngpus=2 -lplace=shared my gpu job

UG-56 PBS Professional 2020.1.1 User’ s Guide

Allocating Resources & Placing Jobs Chapter 4

When a job is submitted requesting any GPU, the PBS scheduler looks for a vnode with an available GPU and assigns
that vnode to the job. Since there is a one-to-one correspondence between GPUs and vnodes, the job can determine the
gpu_id of that vnode. Finally, the application can use the appropriate CUDA call to bind the process to the allocated
GPU.

4.3.7.2.iv Requesting Specific GPUs

When your site uses “advanced GPU scheduling”, your job can request one or more specific GPUs. This allows you to
run applications on the GPUs for which the applications are written.

Your administrator can set up a resource to allow jobs to request specific GPUs. We recommend that the GPU resource
is called gpu_id.

When you request specific GPUs, specify the GPU that you want for each chunk:
qsub -1 select=gpu_id=<GPU ID>:<rest of chunk specification>
Example 4-9: To request 4 vnodes, each with GPU with ID O:

gsub -lselect=4:ncpus=1:ngpus=1:gpu id=gpul my gpu job

When a job is submitted requesting specific GPUs, the PBS scheduler assigns the vnode with the resource containing that
gpu_id to the job. The application can use the appropriate CUDA call to bind the process to the allocated GPU.

4.3.7.3 Viewing GPU Information for Nodes

You can find the number of GPUs available and assigned on execution hosts via the pbsnodes command. See section
4.6, “Viewing Resources”, on page 63.

4.3.8 Caveats and Restrictions on Requesting Resources

4.3.8.1 Caveats and Restrictions for Specifying Resource Values

e Resource values which contain commas, quotes, plus signs, equal signs, colons, or parentheses must be quoted to
PBS. The string must be enclosed in quotes so that the command (e.g. gsub, galter) will parse it correctly.

e When specifying resources via the command line, any quoted strings must be escaped or enclosed in another set of
quotes. This second set of quotes must be different from the first set, meaning that double quotes must be enclosed
in single quotes, and vice versa.

e If a string resource value contains spaces or shell metacharacters, enclose the string in quotes, or otherwise escape
the space and metacharacters. Be sure to use the correct quotes for your shell and the behavior you want.

4.3.8.2 Warning About NOT Requesting walltime

If your job does not request a walltime, and there is no default for walltime, your job is treated as if it had requested a
very, very long walltime. Translation: the scheduler will have a hard time finding a time slot for your job. Remember,
the administrator may schedule dedicated time for the entire PBS complex once a year, for upgrading, etc. In this case,
your job will never run. We recommend requesting a reasonable walltime for your job.

4.3.8.3 Caveats for Jobs Requesting Undefined Resources

If you submit a job that requests a job-wide or host-level resource that is undefined, the job is not rejected at submission;
instead, it is aborted upon being enqueued in an execution queue, if the resources are still undefined. This preserves
backward compatibility.

PBS Professional 2020.1.1 User’ s Guide UG-57

Chapter 4 Allocating Resources & Placing Jobs

4.3.8.4 Matching Resource Requests with Unset Resources

When job resource requests are being matched with available resources, a numerical resource that is unset on a host is
treated as if it were zero, and an unset string cannot satisfy a request. An unset Boolean resource is treated as if it were
set to “False”. An unset resource at the server or queue is treated as if it were infinite.

4.3.8.5 Caveat for Invisible or Unrequestable Resources

Your administrator may define custom resources which restricted, so that they are invisible, or are visible but unrequest-
able. Custom resources which were created to be invisible or unrequestable cannot be requested or altered. The follow-
ing is a list of the commands normally used to view or request resources or modify resource requests, and their
limitations for restricted resources:

pbsnodes

Job submitters cannot view restricted host-level custom resources.
pbs_rstat

Job submitters cannot view restricted reservation resources.
pbs_rsub

Job submitters cannot request restricted custom resources for reservations.
galter

Job submitters cannot alter a restricted resource.
amgr

Job submitters cannot print or list a restricted resource.
gselect

Job submitters cannot specify restricted resources via -1 Resource List.
gsub

Job submitters cannot request a restricted resource.
gstat

Job submitters cannot view a restricted resource.

4.3.8.6 Warning About Requesting Tiny Amounts of Memory

The smallest unit of memory you can request is IKB. If you request 400 bytes, you get I1KB. If you request 1400 bytes,
you get 2KB.

4.3.8.7 Maximum Length of Job Submission Command Line

The maximum length of a command line in PBS is 4095 characters. When you submit a job using the command line,
your select and place statements, and the rest of your command line, must fit within 4095 characters.

4.3.8.8 Only One select Statement Per Job

You can include at most one select statement per job submission.

4.3.8.9 The software Resource is Job-wide

The built-in resource "software" is not a vnode