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A100 Tensor Cores and Tensor Float 32 (TF32)

Mixed Precision Tensor Cores : 
Recap and New Advances

Accuracy and Performance Considerations

Agenda
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MOTIVATION – COST OF DL TRAINING

Vision tasks: ImageNet classification

• 2012: AlexNet trained on 2 GPUs for 5-6 days

• 2017: ResNeXt-101 trained on 8 GPUs for over 10 days

• 2019: NoisyStudent trained with ~1k TPUs for 7 days

Language tasks: LM modeling

• 2018: BERT trained on 64 GPUs for 4 days

• Early-2020: T5 trained on 256 GPUs

• Mid-2020: GPT-3

What’s being done to reduce costs

• Hardware accelerators like GPU Tensor Cores

• Lower computational complexity w/ reduced precision or network compression (aka sparsity)

BERT

GPT-3

T5

RoBERTa
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Standard way to represent real numbers on a computer

• Double precision (FP64), single precision (FP32), half precision (FP16/BF16)

Cannot store numbers with infinite precision, trade-off between range and precision

• Represent values at widely different magnitudes (range)

o Different tensors (weights, activation, and gradients) when training a network

• Provide same relative accuracy at all magnitudes (precision)

o Network weight magnitudes are typically O(1)

o Activations can have orders of magnitude larger values

How floating-point numbers work

• exponent: determines the range of values

o scientific notation in binary (base of 2)

• fraction (or mantissa): determines the relative precision between values

o (2^mantissa) samples between powers of two (exponent)

BASICS OF FLOATING-POINT PRECISION

5 6 74 82

mantissa

exponent
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A100 TENSOR CORES AND 
TENSOR FLOAT 32 (TF32)
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TENSOR CORES – WHAT ARE THEY

Specialized hardware execution units

• Perform matrix and convolution operations, which represent most fundamental and time-consuming operations 
for most DL workloads

Scalar vs matrix instructions

• FP32 cores perform scalar instructions: multiplication of an element of A with an element of B

• Tensor Cores perform matrix instructions: multiplication between vectors/matrix of elements at a time

Compared to scalar FP32 operations, Tensor Cores are:

• 8-16x faster (up to 32x faster with sparsity) and more energy efficient D = AB + C
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FLAVORS OF TENSOR CORES

Floating point types (for DL and HPC applications):

• 16-bit inputs: fp16, bfloat16

• 32-bit inputs: TF32 mode

• 64-bit inputs: fp64

Integer types (for quantized DL inference):

• int8, int4, int1

Integer Quantization for DNN Inference Acceleration

Sparsity (not exactly a type, but also for DL inference):

• 2:4 structure → two elements in a 4-element vector are zero

Accelerating Sparsity in the NVIDIA Ampere Architecture

In italic are options that are 

newly introduced in A100

https://developer.nvidia.com/gtc/2020/video/s22075-vid
https://developer.nvidia.com/gtc/2020/video/s22085-vid
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TENSOR CORE OPTIONS FOR DL TRAINING

TensorFloat (TF32) mode for single-precision training (A100):

• Accelerates only math-limited operations

• Compared to FP32 training

o 8x higher math throughput

o Same memory bandwidth pressure

• Does not require any changes to training scripts

o Default math mode for single-precision training on NVIDIA Ampere GPU Architecture

16-bit formats for mixed-precision training (V100 or A100):

• Fastest option: accelerate math- and memory-limited operations

• Compared to FP32 training:

o 16x higher math throughput 

o 0.5x memory bandwidth pressure

• Requires some changes to training scripts: fp32 master weights, layer selection, loss-scaling

o Automatic Mixed Precision (AMP) reduces these changes to just a few lines (TF, PyT, MxNet)
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TF32 MODE FOR SINGLE PRECISION TRAINING

TF32 is a Tensor Core mode, not a type

• Only convolutions and matrix multiplies convert inputs to TF32

o All other operations remain completely FP32

• All storage in memory remains FP32

• Consequently, it’s only exposed as a Tensor Core operation mode

o Contrast with fp16/bfloat16 types that provide: storage, various math operators, etc

Operation:

• Read FP32 inputs from memory

• Round inputs to TF32 prior to Tensor Core operation

• Multiply inputs without loss of precision

• Accumulate products in FP32

• Write FP32 product to memory

FP32FP32 output

FP32

Convert to
TF32

FP32

Sum with
FP32

accumulator

Full precision
product
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TF32 PRECISION DETAILS

Range (Exponent) 8-bit:

• Matches FP32, covers the same range of values

Precision (Mantissa) 10-bit:

• 1024 samples between powers of 2

• Higher precision than BF16

o 8x more samples between powers of 2 than BF16

• Only difference from FP32

• Sufficient margin for DL training and results in loss in 
accuracy as seen across 80+ networks when compared 
to FP32 and mixed precision modes

FP32

TENSOR FLOAT 32 (TF32)

FP16

BFLOAT16 (BF16)

8 BITS 23 BITS

8 BITS 10 BITS

5 BITS 10 BITS

8 BITS 7 BITS

Sign Exponent Mantissa

TF32 Range

TF32 Precision
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TF32 VERIFICATION

Verification on unmodified model scripts for 80+ networks

• Model architectures:

o Convnets, MLPs, RNNs, Transformers, BERT, GANs, etc.

• Tasks including:

o image tasks (classification, detection, segmentation, generation, gaze)

o language tasks (translation, modeling, question answering)

o Recommenders

o Meta learning

o More niche tasks (logic reasoning, combinatorial problems)

• First and second order methods

All experiments match FP32 accuracy and loss values
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A NOTE ON RUN-TO-RUN VARIATION

DL networks have run-to-run variance during training

• Different seeds affect weight initialization, dropout, etc

• Operations that use atomic adds (e.g. floating-point addition)

• cuDNN heuristics/algorithms

• SW (e.g. container, framework, external libraries)

• Reproducibility in frameworks (e.g. pytorch)

DenseNet201 example

• FP32/TF32 with 60 different seeds

• Visualize data with scatter, sorted from smallest-to-largest, etc

• Accuracy varies up to 0.5% (more for other workloads)

• But FP32/TF32 are statistically equivalent

Have the same mean and median

Precision Mean Median Max Min Stdev

FP32 77.53 77.57 77.67 77.29 0.09

TF32 77.54 77.55 77.79 77.29 0.09

Scatter plot of accuracies

Sorted from smallest-to-largest

To
p
-1

 A
cc

u
ra

cy

Top-1 Accuracy

https://pytorch.org/docs/stable/notes/randomness.html


13

Architecture Network Metric
Model Accuracy

FP32 TF32

Faster RCNN

RN50 FPN 1X mAP 37.81 37.95

RN101 FPN 3X mAP 40.04 40.19

RN50 FPN 3X mAP 42.05 42.14

Mask RCNN

TorchVision
mAP 37.89 37.89

mIOU 34.65 34.69

RN50 FPN 1X
mAP 38.45 38.63

mIOU 35.16 35.25

RN50 FPN 3X
mAP 41.04 40.93

mIOU 37.15 37.23

RN101 FPN 3X
mAP 42.99 43.08

mIOU 38.72 38.73

Retina Net

RN50 FPN 1X mAP 36.46 36.49

RN50 FPN 3X mAP 38.04 38.19

RN101 FPN 3X mAP 39.75 39.82

RPN RN50 FPN 1X mAP 58.02 58.11

Single-Shot 

Detector (SSD)

RN18 mAP 19.13 19.18

RN50 mAP 24.91 24.85

SAMPLING OF NETWORKS

Architecture Network
Top-1 Accuracy

FP32 TF32

ResNet

RN18 70.43 70.58

RN32 74.03 74.08

RN50 76.78 76.73

RN101 77.57 77.57

ResNext
RNX50 77.51 77.62

RNX101 79.10 79.30

WideResNet
WRN50 77.99 78.11

WRN101 78.61 78.62

DenseNet
DN121 75.57 75.57

DN169 76.75 76.69

VGG

V11-BN 68.47 68.44

V16-BN 71.54 71.51

V19-BN 72.54 72.68

V19 71.75 71.60

GoogleNet
InceptionV3 77.20 77.34

Xception 79.09 79.31

Dilated RN DRN A 50 78.24 78.16

ShuffleNet
V2-X1 68.62 68.87

V2-X2 73.02 72.88

MNASNet V1.0 71.62 71.49

SqueezeNet V1_1 60.90 60.85

MobileNet MN-V2 71.64 71.76

Stacked UNet SUN64 69.53 69.62

EfficientNet B0 76.79 76.72

Dataset is MS COCO 2017

Architecture Network Dataset Metric
Model Accuracy

FP32 TF32

Transformer

Vaswani Base WMT BLEU 27.18 27.10

Vaswani Large WMT BLEU 28.63 28.62

Levenshtein WMT Loss 6.16 6.16

Convolutional

Light Conv Base WMT BLEU 28.55 28.74

Light Conv Large WMT BLEU 30.10 30.20

Dynamic Conv 

Base
WMT BLEU 28.34 28.42

Dynamic Conv 

Large
WMT BLEU 30.10 30.31

FairSeq Conv WMT BLEU 24.83 24.86

Recurrent GNMT WMT BLEU 24.53 24.80

Convolutional Fairseq Dauphin WikiText PPL 35.89 35.80

Transformer XL Standard WikiText PPL 22.89 22.80

BERT

Base 

Pre-train
Wikipedia LM Loss 1.34 1.34

Base 

Downstream

SQUAD v1 F1 87.95 87.66

SQUAD v2 F1 76.68 75.67

Classification Tasks Detection & Segmentation Tasks Language Tasks

Dataset is ISLVRC 2012

No hyperparameter changes

Differences in accuracy are within typical bounds of run-to-run variation (different random seeds, etc.)
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LOSS AND ACCURACY CURVES FOR RESNEXT-101
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LOSS AND ACCURACY CURVES FOR MASKRCNN
WITH RN101 BACKBONE
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LOSS AND ACCURACY CURVES FOR TRANSFORMER XL
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SAME ACCURACIES FOR FP32, TF32 AND FP16

Results are easily reproducible using NGC containers and Deep Learning Examples

Model can be found at:

https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Classification/ConvNets/resnet50v1.5

Data collected on NVIDIA A100

Results can be reproduced with Tensorflow 1.15 in NGC container tensorflow:20.06-tf1-py3

Model can be found at:

https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/BERT

Data collected on NVIDIA A100

Performance can be reproduced with PyTorch 1.6 in NGC pytorch:20.06-py3 container

BERT Large Pre-trainingResNet50v1.5

https://ngc.nvidia.com/catalog/all
https://github.com/NVIDIA/DeepLearningExamples
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SAMPLE OF TRAINING SPEEDUPS

• 4-6x faster for transformer-based architectures

• >3x for recurrent networks

• About 2x for convolutional models

transformer

convolutional

recurrent

All models can be found at:

Source: https://github.com/NVIDIA/DeepLearningExamples/

All performance collected on DGX A100 (8XA100)

Results can be reproduced with PyTorch 1.6 and TensorFlow 1.15 in NGC containers pytorch:20.06-py3, tensorflow:20.06-tf1-py3
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TF32 – ON BY DEFAULT

No changes needed to use TF32 and get up to 6X speedup

Supported for TensorFlow, PyTorch and MXNet:

• Default mode for A100 from 20.06 Nvidia container release

• Upstream support in progress

• IEEE FP32 paths remain selectable for non-DL operations

(i.e. HPC applications, some use of GEMM in frameworks for solvers such as LU decomposition etc)

TF32 is enabled for:

• Single-precision convolution and matrix-multiply layers including linear/fully-connected layers, recurrent cells, 
attention blocks

TF32 is not enabled for:

• Convolution or matrix-multiply layers that operate on non-FP32 tensors

• Any layers that are not convolutions or matrix-multiplies

• Optimization/solver operations
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GLOBAL PLATFORM CONTROL FOR TF32

Global variable NVIDIA_TF32_OVERRIDE to toggle TF32 mode at system level (and override 
libraries/frameworks)

Debugging tool

• quick way to rule out any concern regarding TF32 libraries and look for other issues

NVIDIA_TF32_OVERRIDE=0 Not Set

Disables TF32 so that FP32 is used Defaults to library and framework settings
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For developers using NVIDIA libraries

BEHAVIOR OF TF32 IN LIBRARIES FOR A100

cuDNN >= 8.0 cuBLAS >= 11.0

Convolutions Linear algebra operations

TF32 is the default math
Default math mode is FP32 because of 

HPC

TF32 kernels selected when 

operating on 32-bit data

TF32 enabled when math mode set to 

CUBLAS_TF32_TENSOR_OP_MATH *

* Places guards around solver operations in DL frameworks to keep math in FP32

1. Cache current cuBLAS state
2. Set cuBLAS math mode to FP32

3. Execute solver operation
4. Restore original cuBLAS state



22

CHOOSING SINGLE-PRECISION TRAINING ON A100

Great starting point if you used FP32 training on Volta and other processors

A100 hardware provides up to 10X speedup over Volta default

TF32 is on by default, does not require changes in training scripts

Same accuracy as FP32
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MIXED PRECISION TENSOR CORES
RECAP AND NEW ADVANCES
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TENSOR CORES FOR 16-BIT FORMATS

Operation:

• Multiply and add FP16 or BF16 tensors

• Products are computed without loss of precision, 
accumulated in FP32

• Final FP32 output is rounded to FP16/BF16 
before writing to memory

NVIDIA Ampere Architecture enhancements:

• New tensor core design: 2.5x throughput for dense operations (A100 vs V100)

• Sparsity support: additional 2x throughput for sparse operations

• BFloat16 (BF16): Same rate as FP16

FP32

16-bit input

16-bit input

Full precision
product

Sum with
FP32

accumulator

Fastest way to train networks
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MIXED PRECISION TRAINING

Combines single-precision (FP32) with lower precision (e.g. FP16) when training a network

• Use lower precision where applicable (e.g. convolutions, matrix multiplies)

• Keep certain operations in FP32

Achieves the same accuracy as FP32 training using all the same hyper-parameters

Exp Conv
Batch

Norm
ReLU Loss

FP32FP16/BF16
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BENEFITS OF MIXED PRECISION TRAINING

Accelerates math-intensive operations with specialized hardware (GPU Tensor Cores)

• FP16/BF16 have 16x higher throughput than FP32

Accelerates memory-intensive operations by reducing memory traffic

• 16-bits require half number of bytes to be read/written to memory

Reduces memory requirements

• 16-bits reduce storage of activation and gradient tensors 

• Enables training of larger models, larger mini-batches, larger inputs
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BENEFITS OF MIXED PRECISION TRAINING

Accelerates math-intensive operations with specialized hardware (GPU Tensor Cores)

• FP16/BF16 have 16x higher throughput than FP32

Accelerates memory-intensive operations by reducing memory traffic

• 16-bits require half number of bytes to be read/written to memory

Reduces memory requirements

• 16-bits reduce storage of activation and gradient tensors 

• Enables training of larger models, larger mini-batches, larger inputs

Benefits unique to 16-bit mixed-precision, 

not offered by TF32
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SAMPLING OF NETWORKS TRAINED IN MIXED PRECISION

3 years of networks trained with 16-bit formats

Proven to match FP32 results across a wide range of tasks, problem domains, deep neural network 
architectures

Image Classification

AlexNet

DenseNet

Inception

MobileNet

EfficientNet

ResNet

ResNeXt

ShuffleNet

SqueezeNet

VGG

Xception

Dilated ResNet

Stacked U-Net

Detection / Segmentation

DeepLab

Faster R-CNN

Mask R-CNN

SSD

NVIDIA Automotive

RetinaNet

UNET

DETR

Generative Models 

(Images)

DLSS

Vid2vid

GauGAN

Partial Image Inpainting

Progress GAN

Pix2Pix

Speech

Deep Speech 2

Jasper

Tacotron

Wave2vec

WaveNet

WaveGlow

Language Modeling

BERT

GPT

TrellisNet

Gated Convolutions

BigLSTM/mLSTM

RoBERTa

Transformer XL

Translation

Convolutional Seq2Seq

Dynamic Convolutions

GNMT (RNN)

Levenshtein Transformer

Transformer (Self-

Attention)

Recommendation

DeepRecommender

DLRM

NCF
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SAMPLE OF ACHIEVED TRAINING SPEEDUPS

V100 mixed precision is between 2x to 6x faster than V100 single precision training

A100 mixed precision gives an additional 2-3x

All models can be found at:

Source: https://github.com/NVIDIA/DeepLearningExamples/

All performance collected on DGX V100/A100

Results can be reproduced with PyTorch 1.6 and TensorFlow 1.15 in NGC containers pytorch:20.06-py3, tensorflow:20.06-tf1-py3
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Mixed precision helps Facebook speedup training

for machine translation tasks (Fairseq) by 5x due

to faster math and large batch training

Machine Translation

MANY SUCCESS STORIES USING MIXED PRECISION

Mixed Precision improves NVIDIA GauGAN, the viral AI

tool that uses GANs to convert segmentation maps

into lifelike images

• Reduces training from 21 days to less than 10 days

• Larger generative models improve visual quality

• High-res images using larger inputs

Generative Models

Mixed Precision fuels research on the largest Transformer

models for state-of-the-art NLP

• Megatron → Turing-NLG → GPT-3 (8B → 17B → 175B)

• Reduce training time and memory storage

Language Modeling

Mixed Precision being used as the default training

option for DL workloads for a number of customers

• 2-3X faster training of AI models

Computer Vision
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Considerations for training with 16-bit formats:

MIXED PRECISION CONSIDERATIONS

Decide which operations to 
compute in FP32/16-bits

LAYER SELECTION

Keep model weights and updates 
in FP32

WEIGHT STORAGE

Retain small gradient magnitudes 
for FP16

LOSS SCALING
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KINDS OF OPERATIONS

8-16x acceleration from FP16/BF16 Tensor Cores

Matrix Multiplications
linear, matmul, bmm, conv

Reductions
batch norm, layer norm, sum, softmax

Loss Functions
cross entropy, l2 loss, weight decay

Pointwise
relu, sigmoid, tanh, exp, log

2x acceleration with 16-bit formats (but should not sacrifice accuracy)
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Operations that can use 16-bit storage (FP16/BF16)

• Matrix multiplications

• Most pointwise operations (e.g. relu, tanh, add, sub, mul)

Operations that need more precision (FP32/FP16)

• Adding small values to large sums can lead to rounding errors

• Reduction operations (e.g. sum, softmax, normalization)

Operations that need more range (FP32/BF16)

• Pointwise operations where 𝑓(𝑥) ≫ |𝑥| (e.g. exp, log, pow)

• Loss functions

RECOMMENDATIONS THAT ARE INTEGRATED INTO AMP
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Weight updates can become too small for addition in FP16/BF16 during late stages of training

Update gets clipped to zero when weights (w) >> weight update (𝛼∇)

Conservative default : keep weights in FP32 so that small updates accumulate across iterations

16-BITS SOMETIMES INSUFFICIENT FOR WEIGHT UPDATES

𝑤 w− 𝛼𝛻

1 1 +
1

𝑚
representable 
16-bit values

weight update rounds 
to nearest value

𝑤𝑡+1 = 𝑤𝑡 − 𝛼∇t
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Weights are always stored in FP32

Make an FP16 copy of weight during the forward pass (for linear and conv layers)

Optimizer performs weight gradient updates in FP32

FP32 WEIGHT STORAGE AND UPDATES IN FRAMEWORKS
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LOSS SCALING KEEPS TENSORS WITHIN REPRESENTABLE RANGE

Weights, activations, and gradients have wide range of values

Range representable in FP16

Gradients are small

some lost to zero 

can affect network accuracy

but most of range remains unused

implies its not a dynamic range problem

Move small gradient values to FP16 range

multiply loss by a constant factor

all gradients are scaled (shifted) by chain rule

Weights

Activations

Weight
Grads

Activation
Grads
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1. Forward pass of the model

2. Scale the loss and backpropagate the scaled gradients

3. Un-scale the gradients and optimizer performs the weight update

LOSS SCALING IN FRAMEWORKS

1. Scale loss

2. Remove scale

Forward Pass

Copy

Apply



38

1. Start with a very large scale factor (e.g. FP16 max)

2. If gradients overflow (with inf or nan)

• Decrease the scale by two and skip the update

3. If no overflows have occurred for some time (e.g. 2k iterations)

• Increase the scale by two

AUTOMATIC LOSS SCALING

https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html#scalefactor

https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html#scalefactor
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AUTOMATIC MIXED PRECISION FOR 16-BITS

Automatic Mixed Precision (AMP) makes mixed precision 
training with FP16 easy in frameworks

• AMP automates process of training in mixed precision

• Example: Converts matrix multiplies/convolutions to 16-bits 
for Tensor Core acceleration

Works with multiple models, optimizers, and losses
NVIDIA Tensor Cores

NVIDIA AMP

DL Frameworks

Deep Neural Networks
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PyTorch

Native support available in PT 1.6+ and NVIDIA Container 20.06+. Documentation can be 

found here:

https://pytorch.org/docs/stable/amp.html

https://pytorch.org/docs/stable/notes/amp_examples.html

AMP SUPPORT IN FRAMEWORKS AND CONTAINERS

TensorFlow

Available in TF 1.14+, TF 2+, and NVIDIA Container 19.07+. Documentation can be found

here:

https://tensorflow.org/guide/mixed_precision

MXNet
Available in MXNet 1.5+ Contrib, NVIDIA Container 19.04+. Documentation can be found here:

https://mxnet.apache.org/api/python/docs/tutorials/performance/backend/amp.html

https://pytorch.org/docs/stable/amp.html
https://pytorch.org/docs/stable/notes/amp_examples.html
https://tensorflow.org/guide/mixed_precision
https://mxnet.apache.org/api/python/docs/tutorials/performance/backend/amp.html
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AMP FOR TENSORFLOW USING GRAPH OPTIMIZATION API

Recommended option for TensorFlow 1.x

Optimization wrapper

• Graph optimization pass that converts (the type of) certain fp32 operations to fp16 in the TF backend

• Loss-scale optimizer

Example

model = tf.keras.models.Sequential([...])

opt = tf.keras.optimizers.SGD()

opt = tf.train.experimental.enable_mixed_precision_graph_rewrite(opt)

model.compile(loss="cross_entropy",optimizer=opt,metrics=[“accuracy"])

model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs)



42

AMP FOR TENSORFLOW USING KERAS MIXED PRECISION API

Recommended option for TensorFlow 2.x

Ability to control precision as the model is constructed for eager and graph execution

For training the model with Model.fit

• Policy determines the type of layer computations and layer variables

policy = tf.keras.mixed_precision.experimental.Policy('mixed_float16', loss_scale='dynamic’)

tf.keras.mixed_precision.experimental.set_policy(policy)

• E.g. mixed_float16 uses fp16 computations and fp32 variables for numerical stability 

• Override the policy/type of layers that are not numerically stable in fp16

outputs = layers.Activation('softmax’, dtype='float32', name='predictions')(x)

For training the model with a custom training loop

• need to explicitly use loss scaling w/ mixed_float16
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AMP FOR APACHE MXNET

Initialize AMP by changing behavior/types of operations

amp.init()

Wrap the Gluon trainer

amp.init_trainer(trainer)

Apply automatic loss scaling

• Scale the loss to preserve the gradients

with amp.scale_loss(loss, trainer) as scaled_loss:

autograd.backward(scaled_loss)
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APEX AMP FOR PYTORCH

AMP is supported in our APEX extension for PyTorch

But recommend using the native PyTorch automatic mixed precision

Patch operations so that they are casted to the correct type

model, optimizer = amp.initialize(model, optimizer, opt_level="O1")

Apply automatic loss scaling

• Scale the loss to preserve the gradients

with amp.scale_loss(loss, trainer) as scaled_loss:

scaled_loss.backward()
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NATIVE AMP FOR 
PYTORCH
PyTorch 1.6 release

import torch

# Creates once at the beginning of training

scaler = torch.cuda.amp.GradScaler()

for data, label in data_iter:

optimizer.zero_grad()

# Casts operations to mixed precision

with torch.cuda.amp.autocast():

loss = model(data)

# Scales the loss, and calls backward() 

# to create scaled gradients

scaler.scale(loss).backward()

# Unscales gradients and calls

# or skips optimizer.step()

scaler.step(optimizer)

# Updates the scale for next iteration

scaler.update()

Also available in 20.06 and subsequent NVIDIA 
Containers

Implements mixed-precision algorithm as two 
separable components

• Autocasting for layer selection

• Gradscaler for dealing with weight 
storage/updates and automatic loss scaling
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BF16 IN LIBRARIES FOR A100

Bfloat16 is accessible in the following ways in CUDA 11

• ptxas (ex: mma.sync)

• Native CUDA C++ datatype called __nv_bfloat16

• CUDA C++ support for WMMA

• CUDA Math Libraries

Conversion options for 16-bits

• Avoid custom conversions as they are prone to bugs

• Recommend using type casts or intrinsic functions

• Must include the appropriate headers (see code example)

https://developer.nvidia.com/blog/cuda-11-features-revealed/

#include <cuda_fp16.h>

half a = (half)(1.5f);

half b = (half)(1.0f);

half c = a + b;

#include <cuda_bf16.h>

nv_bfloat16 a = (nv_bfloat16)(1.5f);

nv_bfloat16 b = (nv_bfloat16)(1.0f);

nv_bfloat16 c = a + b;

Why should I use it?

Tensor Core acceleration for matrix multiplies

Reduce memory traffic for custom layers

https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#title-new-cuda-libraries
https://developer.nvidia.com/blog/cuda-11-features-revealed/
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CHOOSING MIXED-PRECISION TRAINING ON A100

Option to use if you:

• Use mixed-precision training (FP16 or BF16) on Volta and other processors

• Are using single-precision on A100 training and want further speedup

• Need memory savings to train larger models

Fastest options for training: up to 2x faster than single-precision with TF32

Requires minimal additions to training scripts with AMP

No impact on accuracy when compared to FP32
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ACCURACY AND PERFORMANCE 
CONSIDERATIONS
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MISTAKES TO AVOID WHEN TRAINING WITH MIXED PRECISION

Casting tensors to 16-bits

• Some manually cast to half/float16 for more perf or fix type mismatch

• Avoid manual casts – AMP keeps fp32 weight storage and ensures operations that are safe are computed in fp16

Gradient computations using scaled gradients

• Gradients after backward pass are scaled, and can affect subsequent gradient computations

• Unscale gradients for any operation that uses gradients (e.g. gradient clipping)

• scaler.unscale_(optimizer)

Not checkpointing and resuming the loss scale

• Automatic loss scaling algorithm starts from a very high loss scale

o Likely won’t be the same loss scale obtained after sufficient training

• Store AMP loss scale factor to continue training from the same loss scale

• checkpoint = {'amp': scaler.state_dict()}

• checkpoint = torch.load('checkpoint’)

• scaler.load_state_dict(checkpoint['amp'])
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END-TO-END PERF DEPENDS ON TRAINING COMPOSITION

Amdahl’s law: if you speed up part of your training session (GPU work), then the remaining parts (CPU 
work) limit your overall performance

1x

OTHER
(data pipeline,

communication)

MEMORY
(pointwise, 

reductions)

MATH
(linear, conv, matmul)

training session time

~2x overall faster

Single Precision

Mixed Precision
(TF32/FP16/BF16) 8

-1
6
x

1-2x

GPU CPU
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IMPROVING DL TRAINING PERFORMANCE

No single recommendation as perf implications vary across DL workloads 

Top-down approach

• three levels of profiling to understand & improve training perf

1. Profile the training session

• Find time spent on the GPU

• Reason: Mixed precision only accelerates GPU work

• Measure time spent on different high-level components of the network (e.g. forward, backward, loss, optimizer)

2. Profile the network layers

• Measure time spent on different layer types (e.g. that perform matrix math)

• Reason: Tensor Cores have largest benefits in training perf

3. Profile Tensor Cores

• Make sure TCs are being used & achieve good efficiency
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NVIDIA DEEP LEARNING PROFILER

Designed for analyzing performance of neural networks on DL frameworks 

• Provide layer-resolved breakdown of network time

• Determine issues that limit performance, e.g. "Am I using Tensor Cores"

TensorFlow 1 and PyTorch from 20.07+ Nvidia container release

• TensorFlow 1.x: nvcr.io/nvidia/tensorflow:<xx.yy>-tf1-py3

• PyTorch: nvcr.io/nvidia/pytorch:<xx.yy>-py3

For PyTorch also add following lines to the model script

dlprof python train.py # Wrap training command line

tensorboard --logdir ./eventsfile # Visualize on TensorBoard

import torch.cuda.profiler as profiler

import pyprof

pyprof.init()
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SIMPLE MODE FOR NVIDIA DEEP LEARNING PROFILER

An easy-to-use profiler from 20.06+ Nvidia container release

Can profile any program or python script and is agnostic to the framework

• useful for DL/ML researchers using other DL frameworks

Provides basic metrics for understanding mixed precision performance

https://developer.nvidia.com/gtc/2020/video/cwe21282

https://docs.nvidia.com/deeplearning/frameworks/dlprof-user-guide/

# Wrap training command line with DLPROF

dlprof --mode=simple python train.py

> Total Wall Clock Time (ns): 25812693595 # Time spent on the entire session

> Total GPU Time (ns): 19092416468 # Time spent on GPU work

> Total Tensor Core Kernel Time (ns): 10001024991 # Time spent on Tensor Cores
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FRACTION OF TRAINING SESSION SPENT ON THE GPU

GPU time can be obtained w/ DLProf simple mode

How to profile different portions of model code

A few things to keep in mind

• Skip measurements of the first few iterations

• Average time over tens of iterations to account for variance

• Compute speedups over the same mini-batches for FP32 & AMP

Common pitfalls

• Small batches or models that don’t saturate GPU resources

• Unoptimized bits of model code (e.g. data pre-processing or loss computation)

start = time.time() # start timer

loss = model.forward() # code to be profiled

loss.backward() #

torch.cuda.synchronize() # wait for GPU work to complete

bwd_time = start - time.time() # compute elapsed time
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SPEEDUP DEPENDS ON NETWORK COMPOSITION

Network computations can be broken down into

1. Memory-bound layers

• Accelerated for FP16/BF16 16-bit formats

• Can get up to 2x from reduced memory traffic

• e.g. losses, activations, normalizations, pointwise

2. Math-bound layers

• Accelerated for TF32/FP16/BF16 Tensor Cores

• Can get up to 8-16x from faster matrix math

• e.g. linear, matmul, batched gemms, convolutions

DLProf to find time breakdown of the network (see right)

• Correlates GPU kernels/functions with network ops or layers

Network

FP32 AMP

Speedup

Time (ns) % of Total Time (ns) % of Total

conv2d 1903349214 82.66 652519136 66.01 2.92

instancenorm 99453870 4.32 71529641 7.24 1.39

pad 79588125 3.46 79102365 8.00 1.01

relu 44597183 1.94 28446370 2.88 1.57

l1_loss 27966155 1.21 26933653 2.72 1.04

__truediv__ 19459864 0.85 19177567 1.94 1.01

max_pool2d 16249430 0.71 12963561 1.31 1.25

Interpolate 16062200 0.70 12117584 1.23 1.33

mv 12737865 0.55 7773164 0.79 1.64

add 11288118 0.49 8080203 0.82 1.40

add_ 8816455 0.38 5519740 0.56 1.60

leaky_relu 8578987 0.37 5308481 0.54 1.62

sum 8150963 0.35 7294031 0.74 1.12

cat 7054962 0.31 6878672 0.70 1.03

mul_ 6539092 0.28 6513756 0.66 1.00

__add__ 5630074 0.24 4482021 0.45 1.26

interpolate 5457247 0.24 5328349 0.54 1.02

Layer breakdown for Pix2PixHD

Memory-

bound

Math-bound
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TIME BREAKDOWN BETWEEN NETWORK LAYERS
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TIME BREAKDOWN BETWEEN NETWORK LAYERS
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Recommendation: Have the network spend 

more time on math-bound layers
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MAKE SURE TENSOR CORES ARE BEING USED

NVIDIA Deep Learning Profiler TensorBoard Plugin

Nodes using TC are ops that use Tensor Cores

Nodes Eligible For TC are ops that did not use
Tensor Cores but could have (e.g. conv/linear)

For individual layers can check whether input shapes satisfy TC constraints
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DOUBLE CHECK ON TENSOR CORE EFFICIENCY

If a few layers dominate training time, then make toy example for those layers

NVIDIA Nsight Compute (next gen profiler for CUDA applications)

nv-nsight-cu-cli --metrics  sm__pipe_tensor_cycles_active.avg.pct_of_peak_sustained_active python train.py

Kernel Name Metric Name Metric Unit Metric Value

volta_fp16_s884cudnn sm__pipe_tensor_cycles_active.avg... % 86.35

elementwise_kernel sm__pipe_tensor_cycles_active.avg... % 0

n, k = (1024, 1024) # layer dimensions

x = torch.randn(k, n).cuda().half()

linear = torch.nn.Linear(k, n).cuda().half()

y = linear(x) + x
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IMPROVING TENSOR CORE PERFORMANCE

1. Satisfy shape constraints to enable tensor cores

• For linear layers: input size, output size, batch size 
should be multiples of 8

• For convolutions: input and output channel counts 
should be multiples of 8

• Not requirement for cuBLAS >=11.0 and cuDNN >= 
8.0, but can help better perf

2. Ensure Tensor Cores are doing enough math

• If any GEMM dimension is 128 or smaller, operation is 
memory bound rather than math bound

• Speedup will be in 1-2x range rather than 8-16x
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GENERAL PERFORMANCE GUIDELINES

Follow a few simple guidelines to maximize performance from mixed-precision

1. Ensure most of training time is spent doing GPU work

• Ensure GPU is being utilized (e.g. larger model/batch size)

• Eliminate CPU inefficiencies such as data preprocessing

2. Ensure math-bound layers (gemms and convs) dominate training time

• Leverage fusions to reduce time spent on memory-bound layers

• Adapt network architecture to be more hardware-friendly

3. Improve Tensor Core utilization with good parameter choices

• Favor multiples of 8 for linear/conv layer dimensions

• Ensure linear/conv layers are large enough to fully utilize TCs

NVIDIA Deep Learning Performance Guide
GTC2020 - Tensor Core Performance on 

NVIDIA GPUs: The Ultimate Guide

https://docs.nvidia.com/deeplearning/performance/index.html
https://developer.nvidia.com/gtc/2020/video/s21929-vid
https://developer.nvidia.com/gtc/2020/video/s21929-vid
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CONCLUSIONS
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CONCLUSIONS

A100 introduces the next generation of Tensor Cores for DL acceleration

• TF32 is the default math mode on A100

• Accelerates single-precision training

• 10x more math throughput that Volta single-precision

• Network speedups up to 6x

FP16 and BF16 formats for maximum speed

• FP16 and BF16 Tensor Cores provide 16x more math throughput than FP32 (2x faster than TF32)

• AMP makes FP16 training easy in all major frameworks

• Training results match those of single-precision, require no changes to hyper-parameters

• Also reduce memory consumption, enabling larger batches, larger models, etc

Sparsity support for a further 2x math throughput

• Accelerates DL inference




