

TRAINING NEURAL NETWORKS WITH TENSOR CORES

Dusan Stosic, NVIDIA

Agenda

Mixed Precision Tensor Cores : Recap and New Advances

Accuracy and Performance Considerations

A100 Tensor Cores and Tensor Float 32 (TF32)

MOTIVATION - COST OF DL TRAINING

Vision tasks: ImageNet classification

- 2012: AlexNet trained on 2 GPUs for 5-6 days
- 2017: ResNeXt-101 trained on 8 GPUs for over 10 days
- 2019: NoisyStudent trained with ~1k TPUs for 7 days

Language tasks: LM modeling

- 2018: BERT trained on 64 GPUs for 4 days
- Early-2020: T5 trained on 256 GPUs
- Mid-2020: GPT-3

What's being done to reduce costs

- Hardware accelerators like GPU Tensor Cores
- Lower computational complexity w/ reduced precision or network compression (aka sparsity)

BASICS OF FLOATING-POINT PRECISION

Standard way to represent real numbers on a computer

Double precision (FP64), single precision (FP32), half precision (FP16/BF16)

Cannot store numbers with infinite precision, trade-off between range and precision

- Represent values at widely different magnitudes (range)
 - Different tensors (weights, activation, and gradients) when training a network
- Provide same relative accuracy at all magnitudes (precision)
 - Network weight magnitudes are typically O(1)
 - Activations can have orders of magnitude larger values

How floating-point numbers work

- exponent: determines the range of values
 - scientific notation in binary (base of 2)
- fraction (or mantissa): determines the relative precision between values
 - (2^{mantissa}) samples between powers of two (exponent)

A100 TENSOR CORES AND TENSOR FLOAT 32 (TF32)

TENSOR CORES - WHAT ARE THEY

Specialized hardware execution units

Perform matrix and convolution operations, which represent most fundamental and time-consuming operations for most DL workloads

Scalar vs matrix instructions

- FP32 cores perform scalar instructions: multiplication of an element of A with an element of B
- Tensor Cores perform matrix instructions: multiplication between vectors/matrix of elements at a time

Compared to scalar FP32 operations, Tensor Cores are:

8-16x faster (up to 32x faster with sparsity) and more energy efficient

A _{0,0}	A _{0,1}	A _{0,2}	A _{0,3}
A _{1,0}	A _{1,1}	A _{1,2}	A _{1,3}
A _{2,0}	A _{2,1}	A _{2,2}	A _{2,3}
A _{3,0}	A _{3,1}	A _{3,2}	A _{3,3}

B _{0,0}	B _{0,1}	B _{0,2}	B _{0,3}
B _{1,0}	B _{1,1}	B _{1,2}	B _{1,3}
B _{2,0}	B _{2,1}	B _{2,2}	B _{2,3}
B _{3,0}	B _{3,1}	B _{3,2}	B _{3,3}

D = AB + C

C _{0,0}	C _{0,1}	C _{0,2}	C _{0,3}
C _{1,0}	C _{1,1}	C _{1,2}	C _{1,3}
C _{2,0}	C _{2,1}	C _{2,2}	C _{2,3}
C _{3,0}	C _{3,1}	C _{3,2}	C _{3,3}

FLAVORS OF TENSOR CORES

Floating point types (for DL and HPC applications):

- 16-bit inputs: fp16, *bfloat16*
- 32-bit inputs: *TF32 mode*
- 64-bit inputs: *fp64*

Integer types (for quantized DL inference):

• int8, int4, int1

Integer Quantization for DNN Inference Acceleration

Sparsity (not exactly a type, but also for DL inference):

2:4 structure → two elements in a 4-element vector are zero
 <u>Accelerating Sparsity in the NVIDIA Ampere Architecture</u>

In italic are options that are newly introduced in A100

TENSOR CORE OPTIONS FOR DL TRAINING

TensorFloat (TF32) <u>mode</u> for single-precision training (A100):

- Accelerates only math-limited operations
- Compared to FP32 training
 - 8x higher math throughput
 - Same memory bandwidth pressure
- Does not require any changes to training scripts
 - Default math mode for single-precision training on NVIDIA Ampere GPU Architecture
- 16-bit formats for mixed-precision training (V100 or A100):
- Fastest option: accelerate math- and memory-limited operations
- Compared to FP32 training:
 - **16x** higher math throughput
 - 0.5x memory bandwidth pressure
- Requires some changes to training scripts: fp32 master weights, layer selection, loss-scaling
 - Automatic Mixed Precision (AMP) reduces these changes to just a few lines (TF, PyT, MxNet)

TF32 MODE FOR SINGLE PRECISION TRAINING

TF32 is a Tensor Core mode, not a type

- Only convolutions and matrix multiplies convert inputs to TF32
 - All other operations remain completely FP32
- All storage in memory remains FP32
- Consequently, it's only exposed as a Tensor Core operation mode
 - Contrast with fp16/bfloat16 types that provide: storage, various math operators, etc.

Operation:

- Read FP32 inputs from memory
- Round inputs to TF32 prior to Tensor Core operation
- Multiply inputs without loss of precision
- Accumulate products in FP32
- Write FP32 product to memory

Convert to

TF32

FP32 -

FP32

NVIDIA

TF32 PRECISION DETAILS

Range (Exponent) 8-bit:

Matches FP32, covers the same range of values

Precision (Mantissa) 10-bit:

- 1024 samples between powers of 2
- Higher precision than BF16
 - 8x more samples between powers of 2 than BF16
- Only difference from FP32
- Sufficient margin for DL training and results in loss in accuracy as seen across 80+ networks when compared to FP32 and mixed precision modes

TF32 VERIFICATION

Verification on unmodified model scripts for 80+ networks

- Model architectures:
 - Convnets, MLPs, RNNs, Transformers, BERT, GANs, etc.
- Tasks including:
 - image tasks (classification, detection, segmentation, generation, gaze)
 - language tasks (translation, modeling, question answering)
 - Recommenders
 - Meta learning
 - More niche tasks (logic reasoning, combinatorial problems)
- First and second order methods

All experiments match FP32 accuracy and loss values

A NOTE ON RUN-TO-RUN VARIATION

DL networks have run-to-run variance during training

- Different seeds affect weight initialization, dropout, etc
- Operations that use atomic adds (e.g. floating-point addition)
- cuDNN heuristics/algorithms
- SW (e.g. container, framework, external libraries)
- Reproducibility in frameworks (e.g. <u>pytorch</u>)

DenseNet201 example

- FP32/TF32 with 60 different seeds
- Visualize data with scatter, sorted from smallest-to-largest, etc
- Accuracy varies up to 0.5% (more for other workloads)
- But FP32/TF32 are statistically equivalent

Have the same mean and median

Precision	Mean	Median	Max	Min	Stdev
FP32	77.53	77.57	77.67	77.29	0.09
TF32	77.54	77.55	77.79	77.29	0.09

Top-1 Accuracy

77.3

Sorted from smallest-to-largest

Scatter plot of accuracies

SAMPLING OF NETWORKS

Classification Tasks

Architactura	Network —	Top-1 A	Top-1 Accuracy		
Architecture	Network	FP32	TF32		
	RN18	70.43	<u>70.58</u>		
PacNat	RN32	74.03	<u>74.08</u>		
Resnel	RN50	<u>76.78</u>	76.73		
	RN101	<u>77.57</u>	<u>77.57</u>		
PasNaxt	RNX50	77.51	<u>77.62</u>		
Resident	RNX101	79.10	<u>79.30</u>		
WidePesNet	WRN50	77.99	<u>78.11</u>		
WIDERESNEL	WRN101	78.61	<u>78.62</u>		
DenseNet	DN121	<u>75.57</u>	<u>75.57</u>		
Densenet	DN169	<u>76.75</u>	76.69		
	V11-BN	<u>68.47</u>	68.44		
VCC	V16-BN	<u>71.54</u>	71.51		
700	V19-BN	72.54	<u>72.68</u>		
	V19	<u>71.75</u>	71.60		
CoogleNet	InceptionV3	77.20	<u>77.34</u>		
Googlenet	Xception	79.09	<u>79.31</u>		
Dilated RN	DRN A 50	<u>78.24</u>	78.16		
ShuffleNet	V2-X1	68.62	<u>68.87</u>		
Sildjjienel	V2-X2	<u>73.02</u>	72.88		
MNASNet	V1.0	<u>71.62</u>	71.49		
SqueezeNet	V1_1	<u>60.90</u>	60.85		
MobileNet	MN-V2	71.64	<u>71.76</u>		
Stacked UNet	SUN64	69.53	<u>69.62</u>		
EfficientNet	ВО	<u>76.79</u>	76.72		

Detection & Segmentation Tasks

Architecture	Network	Motric	Model Accuracy	
Architecture		Metric	FP32	TF32
	RN50 FPN 1X	mAP	37.81	<u>37.95</u>
Faster RCNN	RN101 FPN 3X	mAP	40.04	<u>40.19</u>
	RN50 FPN 3X	mAP	42.05	<u>42.14</u>
	TorchVision	mAP	<u>37.89</u>	<u>37.89</u>
		mIOU	34.65	<u>34.69</u>
	RN50 FPN 1X	mAP	38.45	<u>38.63</u>
Mack DCNN		mIOU	35.16	<u>35.25</u>
MUSK KCININ	RN50 FPN 3X	mAP	<u>41.04</u>	40.93
		mIOU	37.15	<u>37.23</u>
	RN101 FPN 3X	mAP	42.99	<u>43.08</u>
		mIOU	38.72	<u>38.73</u>
	RN50 FPN 1X	mAP	36.46	<u>36.49</u>
Retina Net	RN50 FPN 3X	mAP	38.04	<u>38.19</u>
	RN101 FPN 3X	mAP	39.75	<u>39.82</u>
RPN	RN50 FPN 1X	mAP	58.02	<u>58.11</u>
Single-Shot	RN18	mAP	19.13	<u>19.18</u>
Detector (SSD)	RN50	mAP	24.91	24.85

Dataset is MS COCO 2017

No hyperparameter changes Differences in accuracy are within typical bounds of run-to-run variation (different random seeds, etc.)

Dataset is ISLVRC 2012

Language Tasks

Architactura	Notwork	Datasat	Metric –	Model Accuracy	
Architecture	Network	Dalasel		FP32	TF32
	Vaswani Base	WMT	BLEU	<u>27.18</u>	27.10
Transformer	Vaswani Large	WMT	BLEU	<u>28.63</u>	28.62
	Levenshtein	WMT	Loss	<u>6.16</u>	<u>6.16</u>
	Light Conv Base	WMT	BLEU	28.55	<u>28.74</u>
	Light Conv Large	WMT	BLEU	30.10	<u>30.20</u>
Convolutional	Dynamic Conv Base	WMT	BLEU	28.34	<u>28.42</u>
	Dynamic Conv Large	WMT	BLEU	30.10	<u>30.31</u>
	FairSeq Conv	WMT	BLEU	24.83	<u>24.86</u>
Recurrent	GNMT	WMT	BLEU	24.53	<u>24.80</u>
Convolutional	Fairseq Dauphin	WikiText	PPL	35.89	<u>35.80</u>
Transformer	XL Standard	WikiText	PPL	22.89	<u>22.80</u>
	Base Pre-train	Wikipedia	LM Loss	<u>1.34</u>	<u>1.34</u>
BERT	Base	SQUAD v1	F1	<u>87.95</u>	87.66
	Downstream	SQUAD v2	F1	76.68	75.67

LOSS AND ACCURACY CURVES FOR RESNEXT-101

Loss

Epochs

LOSS AND ACCURACY CURVES FOR MASKRCNN WITH RN101 BACKBONE

Iterations

15

LOSS AND ACCURACY CURVES FOR TRANSFORMER XL

200k

16

🕺 NVIDIA.

SAME ACCURACIES FOR FP32, TF32 AND FP16

ResNet50v1.5

Results are easily reproducible using <u>NGC containers</u> and <u>Deep Learning Examples</u>

BERT Large Pre-training

Model can be found at: https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/BERT Data collected on NVIDIA A100 Performance can be reproduced with PyTorch 1.6 in NGC pytorch: 20.06-py3 container

SAMPLE OF TRAINING SPEEDUPS

- 4-6x faster for transformer-based architectures
- >3x for recurrent networks
- About 2x for convolutional models

All models can be found at:

Source: https://github.com/NVIDIA/DeepLearningExamples/

All performance collected on DGX A100 (8XA100)

Results can be reproduced with PyTorch 1.6 and TensorFlow 1.15 in NGC containers pytorch: 20.06-py3, tensorflow: 20.06-tf1-py3

A100 TF32 speedup over V100 FP32

TF32 - ON BY DEFAULT

No changes needed to use TF32 and get up to 6X speedup

Supported for TensorFlow, PyTorch and MXNet:

- Default mode for A100 from 20.06 Nvidia container release
- Upstream support in progress
- IEEE FP32 paths remain selectable for non-DL operations (i.e. HPC applications, some use of GEMM in frameworks for solvers such as LU decomposition etc)

TF32 is enabled for:

- Single-precision convolution and matrix-multiply layers including linear/fully-connected layers, recurrent cells, attention blocks
- TF32 is not enabled for:
 - Convolution or matrix-multiply layers that operate on non-FP32 tensors
 - Any layers that are not convolutions or matrix-multiplies
 - Optimization/solver operations

GLOBAL PLATFORM CONTROL FOR TF32

Global variable NVIDIA_TF32_OVERRIDE to toggle TF32 mode at system level (and override) libraries/frameworks)

NVIDIA_TF32_OVERRIDE=0	Not Set
Disables TF32 so that FP32 is used	Defaults to library and framework settings

Debugging tool

quick way to rule out any concern regarding TF32 libraries and look for other issues

BEHAVIOR OF TF32 IN LIBRARIES FOR A100

For developers using NVIDIA libraries

cuDNN >= 8.0	cuBLAS >= 11.0
Convolutions	Linear algebra op
TF32 is the default math	Default math mod HPC
TF32 kernels selected when operating on 32-bit data	TF32 enabled whe CUBLAS_TF32_TE

* Places guards around solver operations in DL frameworks to keep math in FP32

1. Cache current cuBLAS state

2. Set cuBLAS math mode to FP32

- 3. Execute solver operation

erations

de is FP32 because of

en math mode set to NSOR_OP_MATH *

4. Restore original cuBLAS state

CHOOSING SINGLE-PRECISION TRAINING ON A100

Great starting point if you used FP32 training on Volta and other processors A100 hardware provides up to 10X speedup over Volta default TF32 is on by default, does not require changes in training scripts Same accuracy as FP32

MIXED PRECISION TENSOR CORES RECAP AND NEW ADVANCES

TENSOR CORES FOR 16-BIT FORMATS Fastest way to train networks

Operation:

- Multiply and add FP16 or BF16 tensors
- 16-bit input Products are computed without loss of precision, accumulated in FP32
- Final FP32 output is rounded to FP16/BF16 before writing to memory

NVIDIA Ampere Architecture enhancements:

- New tensor core design: 2.5x throughput for dense operations (A100 vs V100)
- Sparsity support: additional 2x throughput for sparse operations
- BFloat16 (BF16): Same rate as FP16

MIXED PRECISION TRAINING

Combines single-precision (FP32) with lower precision (e.g. FP16) when training a network

- Use lower precision where applicable (e.g. convolutions, matrix multiplies)
- Keep certain operations in FP32

Achieves the same accuracy as FP32 training using all the same hyper-parameters

BENEFITS OF MIXED PRECISION TRAINING

Accelerates math-intensive operations with specialized hardware (GPU Tensor Cores)

FP16/BF16 have 16x higher throughput than FP32

Accelerates memory-intensive operations by reducing memory traffic

16-bits require half number of bytes to be read/written to memory

Reduces memory requirements

- 16-bits reduce storage of activation and gradient tensors
- Enables training of larger models, larger mini-batches, larger inputs

BENEFITS OF MIXED PRECISION TRAINING

Accelerates math-intensive operations with specialized hardware (GPU Tensor Cores)

FP16/BF16 have 16x higher throughput than FP32

Accelerates memory-intensive operations by reducing memory traffic

16-bits require half number of bytes to be read,

Reduces memory requirements

- 16-bits reduce storage of activation and gradier
- Enables training of larger models, larger mini-batches, larger inputs

Benefits unique to 16-bit mixed-precision, not offered by TF32

SAMPLING OF NETWORKS TRAINED IN MIXED PRECISION

WaveGlow

3 years of networks trained with 16-bit formats

Proven to match FP32 results across a wide range of tasks, problem domains, deep neural network architectures

Image Classification	Detection / Segmentation	Generative Models
AlexNet	DeepLab	(Images)
DenseNet	Faster R-CNN	DLSS
Inception	Mask R-CNN	Vid2vid
MobileNet		GauGAN
EfficientNet	220	Partial Image Inpainting
ResNet	NVIDIA Automotive	Progress GAN
ResNet	RetinaNet	Pix2Pix
	UNET	
Shufflenet	DETR	Speech
SqueezeNet		Deep Speech 2
VGG	Recommendation	Jasper
Xception	DeepRecommender	Tacotron
Dilated ResNet	DLRM	Wave2vec
Stacked U-Net	NCF	WaveNet

Language Modeling
BERT
GPT
TrellisNet
Gated Convolutions
BigLSTM/mLSTM
RoBERTa
Transformer XL
Translation
Convolutional Seq2Seq
Dynamic Convolutions

GNMT (RNN)

Levenshtein Transformer

Transformer (Self-Attention)

SAMPLE OF ACHIEVED TRAINING SPEEDUPS

V100 mixed precision is between 2x to 6x faster than V100 single precision training

A100 mixed precision gives an additional 2-3x

Source: https://github.com/NVIDIA/DeepLearningExamples/

All performance collected on DGX V100/A100

Results can be reproduced with PyTorch 1.6 and TensorFlow 1.15 in NGC containers pytorch: 20.06-py3, tensorflow: 20.06-tf1-py3

MANY SUCCESS STORIES USING MIXED PRECISION

Generative Models

Mixed Precision improves NVIDIA GauGAN, the viral AI tool that uses GANs to convert segmentation maps into lifelike images

- Reduces training from 21 days to less than 10 days
- Larger generative models improve visual quality
- High-res images using larger inputs

Computer Vision

Mixed Precision being used as the default training option for DL workloads for a number of customers

• 2-3X faster training of AI models

Machine Translation

Mixed precision helps Facebook speedup training for machine translation tasks (Fairseq) by 5x due to faster math and large batch training

Language Modeling

Mixed Precision fuels research on the largest Transformer models for state-of-the-art NLP • <u>Megatron</u> \rightarrow <u>Turing-NLG</u> \rightarrow <u>GPT-3</u> (8B \rightarrow 17B \rightarrow 175B) Reduce training time and memory storage

MIXED PRECISION CONSIDERATIONS

Considerations for training with 16-bit formats:

LAYER SELECTION

Decide which operations to compute in FP32/16-bits

WEIGHT STORAGE

Keep model weights and updates in FP32

LOSS SCALING

Retain small gradient magnitudes for FP16

KINDS OF OPERATIONS

2x acceleration with 16-bit formats (but should not sacrifice accuracy)

Reductions

batch norm, layer norm, sum, softmax

Pointwise relu, sigmoid, tanh, exp, log

RECOMMENDATIONS THAT ARE INTEGRATED INTO AMP

Operations that can use 16-bit storage (FP16/BF16)

- Matrix multiplications
- Most pointwise operations (e.g. relu, tanh, add, sub, mul)

Operations that need more precision (FP32/FP16)

- Adding small values to large sums can lead to rounding errors
- Reduction operations (e.g. sum, softmax, normalization)

Operations that need more range (FP32/BF16)

- Pointwise operations where $|f(x)| \gg |x|$ (e.g. exp, log, pow)
- Loss functions

16-BITS SOMETIMES INSUFFICIENT FOR WEIGHT UPDATES

$$w_{t+1} = w_t - \alpha \nabla_t$$

Weight updates can become too small for addition in FP16/BF16 during late stages of training Update gets clipped to zero when weights (w) >> weight update ($\alpha \nabla$) Conservative default : keep weights in FP32 so that small updates accumulate across iterations

FP32 WEIGHT STORAGE AND UPDATES IN FRAMEWORKS

Weights are *always* stored in FP32

Make an FP16 copy of weight during the forward pass (for linear and conv layers)

Optimizer performs weight gradient updates in FP32

F16 Activations

—Weights
—Activation Grad

Activations
 Activation Grad

→ Updated Master-Weights

壑 NVIDIA.

LOSS SCALING KEEPS TENSORS WITHIN REPRESENTABLE RANGE

Weights, activations, and gradients have wide range of values

Range representable in FP16

Gradients are small

some lost to zero

can affect network accuracy

but most of range remains unused

implies its not a dynamic range problem

Move small gradient values to FP16 range

multiply loss by a constant factor

all gradients are scaled (shifted) by chain rule

36

🕺 NVIDIA

LOSS SCALING IN FRAMEWORKS

- 1. Forward pass of the model
- 2. Scale the loss and backpropagate the scaled gradients
- 3. Un-scale the gradients and optimizer performs the weight update

AUTOMATIC LOSS SCALING

- 1. Start with a very large scale factor (e.g. FP16 max)
- 2. If gradients overflow (with inf or nan)
 - Decrease the scale by two and skip the update
- 3. If no overflows have occurred for some time (e.g. 2k iterations)
 - Increase the scale by two

https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html#scalefactor

🕺 NVIDIA.

AUTOMATIC MIXED PRECISION FOR 16-BITS

Automatic Mixed Precision (AMP) makes mixed precision training with FP16 easy in frameworks

- AMP automates process of training in mixed precision
- Example: Converts matrix multiplies/convolutions to 16-bits for Tensor Core acceleration

Works with multiple models, optimizers, and losses

AMP SUPPORT IN FRAMEWORKS AND CONTAINERS

	Available in TF 1.14+, TF 2+, and NVIDIA Container 1
TensorFlow	here:
	https://tensorflow.org/guide/mixed precision

	Native support available in PT 1.6+ and NVIDIA Conta
PyTorch	found here:
	https://pytorch.org/docs/stable/amp.html
	https://pytorch.org/docs/stable/notes/amp examp

	Available in MXNet 1.5+ Contrib, NVIDIA Container 19
MXNet	
	<pre>https://mxnet.apache.org/api/python/docs/tutori</pre>

9.07+. Documentation can be found

ainer 20.06+. Documentation can be

les.html

.04+. Documentation can be found here:

als/performance/backend/amp.html

AMP FOR TENSORFLOW USING GRAPH OPTIMIZATION API

Recommended option for TensorFlow 1.x

Optimization wrapper

- Graph optimization pass that converts (the type of) certain fp32 operations to fp16 in the TF backend
- Loss-scale optimizer

Example

```
model = tf.keras.models.Sequential([...])
```

```
opt = tf.keras.optimizers.SGD()
opt = tf.train.experimental.enable mixed precision graph rewrite(opt)
```

```
model.compile(loss="cross entropy", optimizer=opt, metrics=["accuracy"])
```

model.fit(x train, y train, batch size=batch size, epochs=epochs)

AMP FOR TENSORFLOW USING KERAS MIXED PRECISION API

Recommended option for TensorFlow 2.x

Ability to control precision as the model is constructed for eager and graph execution

For training the model with Model.fit

• Policy determines the type of layer computations and layer variables

policy = tf.keras.mixed_precision.experimental.Policy('mixed_float16', loss_scale='dynamic')
tf.keras.mixed_precision.experimental.set_policy(policy)

- E.g. mixed_float16 uses fp16 computations and fp32 variables for numerical stability
- Override the policy/type of layers that are not numerically stable in fp16

outputs = layers.Activation('softmax', dtype='float32', name='predictions')(x)

For training the model with a custom training loop

need to explicitly use loss scaling w/ mixed_float16

numerical stability

AMP FOR APACHE MXNET

Initialize AMP by changing behavior/types of operations

amp.init()

Wrap the Gluon trainer

amp.init trainer(trainer)

Apply automatic loss scaling

Scale the loss to preserve the gradients

with amp.scale loss(loss, trainer) as scaled loss: autograd.backward(scaled loss)

APEX AMP FOR PYTORCH

AMP is supported in our APEX extension for PyTorch

But recommend using the native PyTorch automatic mixed precision

Patch operations so that they are casted to the correct type

model, optimizer = amp.initialize(model, optimizer, opt level="01")

Apply automatic loss scaling

Scale the loss to preserve the gradients with amp.scale loss(loss, trainer) as scaled loss: scaled loss.backward()

import torch

Creates once at the beginning of training scaler = torch.cuda.amp.GradScaler()

for data, label in data iter: optimizer.zero grad()

> # Casts operations to mixed precision with torch.cuda.amp.autocast(): loss = model(data)

Scales the loss, and calls backward() # to create scaled gradients scaler.scale(loss).backward()

Unscales gradients and calls # or skips optimizer.step() scaler.step(optimizer)

Updates the scale for next iteration scaler.update()

NATIVE AMP FOR PYTORCH PyTorch 1.6 release

Also available in 20.06 and subsequent NVIDIA Containers

Implements mixed-precision algorithm as two separable components

- Autocasting for layer selection
- **Gradscaler** for dealing with weight storage/updates and automatic loss scaling

BF16 IN LIBRARIES FOR A100

Bfloat16 is accessible in the following ways in CUDA 11

- ptxas (ex: mma.sync)
- Native CUDA C++ datatype called __nv_bfloat16
- CUDA C++ support for WMMA
- <u>CUDA Math Libraries</u>

Conversion options for 16-bits

- Avoid custom conversions as they are prone to bugs
- Recommend using type casts or intrinsic functions
- Must include the appropriate headers (see code example)

<pre>#include <cuda_fp16.h></cuda_fp16.h></pre>	#inclu
half $a = (half)(1.5f);$	nv_bfl
half $b = (half) (1.0f);$	nv_bfl
half $c = a + b;$	nv_bfl

https://developer.nvidia.com/blog/cuda-11-features-revealed/

Why should I use it? Tensor Core acceleration for matrix multiplies Reduce memory traffic for custom layers

de <cuda_bf16.h>
oat16 a = (nv_bfloat16)(1.5f);
oat16 b = (nv_bfloat16)(1.0f);
oat16 c = a + b;

CHOOSING MIXED-PRECISION TRAINING ON A100

Option to use if you:

- Use mixed-precision training (FP16 or BF16) on Volta and other processors
- Are using single-precision on A100 training and want further speedup
- Need memory savings to train larger models

Fastest options for training: up to 2x faster than single-precision with TF32

Requires minimal additions to training scripts with AMP

No impact on accuracy when compared to FP32

ACCURACY AND PERFORMANCE CONSIDERATIONS

MISTAKES TO AVOID WHEN TRAINING WITH MIXED PRECISION

Casting tensors to 16-bits

- Some manually cast to half/float16 for more perf or fix type mismatch
- Avoid manual casts AMP keeps fp32 weight storage and ensures operations that are safe are computed in fp16

Gradient computations using scaled gradients

- Gradients after backward pass are scaled, and can affect subsequent gradient computations
- Unscale gradients for any operation that uses gradients (e.g. gradient clipping)
- scaler.unscale (optimizer)

Not checkpointing and resuming the loss scale

- Automatic loss scaling algorithm starts from a very high loss scale
 - Likely won't be the same loss scale obtained after sufficient training
- Store AMP loss scale factor to continue training from the same loss scale
- checkpoint = {'amp': scaler.state dict() }
- checkpoint = torch.load('checkpoint')
- scaler.load state dict(checkpoint['amp'])

END-TO-END PERF DEPENDS ON TRAINING COMPOSITION

Amdahl's law: if you speed up part of your training session (GPU work), then the remaining parts (CPU work) limit your overall performance

training session time

IMPROVING DL TRAINING PERFORMANCE

No single recommendation as perf implications vary across DL workloads

Top-down approach

- three levels of profiling to understand & improve training perf
- 1. Profile the training session
 - Find time spent on the GPU
 - Reason: Mixed precision only accelerates GPU work
 - Measure time spent on different high-level components of the network (e.g. forward, backward, loss, optimizer)
- 2. Profile the network layers
 - Measure time spent on different layer types (e.g. that perform matrix math)
 - Reason: Tensor Cores have largest benefits in training perf
- 3. Profile Tensor Cores
 - Make sure TCs are being used & achieve good efficiency

NVIDIA DEEP LEARNING PROFILER

Designed for analyzing performance of neural networks on DL frameworks

- Provide layer-resolved breakdown of network time
- Determine issues that limit performance, e.g. "Am I using Tensor Cores"

TensorFlow 1 and PyTorch from 20.07+ Nvidia container release

- **TensorFlow 1.x:** nvcr.io/nvidia/tensorflow:<xx.yy>-tf1-py3
- **PyTorch:** nvcr.io/nvidia/pytorch:<xx.yy>-py3

dlprof python train.py tensorboard --logdir ./eventsfile

Wrap training command line # Visualize on TensorBoard

For PyTorch also add following lines to the model script

import torch.cuda.profiler as profiler import pyprof pyprof.init()

SIMPLE MODE FOR NVIDIA DEEP LEARNING PROFILER

An easy-to-use profiler from 20.06+ Nvidia container release

Can profile any program or python script and is agnostic to the framework

useful for DL/ML researchers using other DL frameworks

Provides basic metrics for understanding mixed precision performance

Wrap training command line with DLPROF dlprof --mode=simple python train.py

> Total Wall Clock Time (ns): 25812693595

- > Total GPU Time (ns): 19092416468
- > Total Tensor Core Kernel Time (ns): 10001024991

https://developer.nvidia.com/gtc/2020/video/cwe21282

https://docs.nvidia.com/deeplearning/frameworks/dlprof-user-guide/

Time spent on the entire session
Time spent on GPU work

Time spent on Tensor Cores

FRACTION OF TRAINING SESSION SPENT ON THE GPU

GPU time can be obtained w/ DLProf simple mode

How to profile different portions of model code

```
start = time.time()
                                # start timer
loss = model.forward()
                                # code to be profiled
loss.backward()
torch.cuda.synchronize()
                         # wait for GPU work to complete
bwd time = start - time.time() # compute elapsed time
```

A few things to keep in mind

- Skip measurements of the first few iterations
- Average time over tens of iterations to account for variance
- Compute speedups over the same mini-batches for FP32 & AMP

Common pitfalls

- Small batches or models that don't saturate GPU resources
- Unoptimized bits of model code (e.g. data pre-processing or loss computation)

SPEEDUP DEPENDS ON NETWORK COMPOSITION

Network computations can be broken down into

- 1. Memory-bound layers
 - Accelerated for FP16/BF16 16-bit formats
 - Can get up to 2x from reduced memory traffic
 - e.g. losses, activations, normalizations, pointwise
- 2. Math-bound layers
 - Accelerated for TF32/FP16/BF16 Tensor Cores
 - Can get up to 8-16x from faster matrix math
 - e.g. linear, matmul, batched gemms, convolutions

DLProf to find time breakdown of the network (see right)

• Correlates GPU kernels/functions with network ops or layers

Memorybound

Math-bound

Layer breakdown for Pix2PixHD

NI	FP32		AM	Canadan	
Network -	Time (ns)	% of Total	Time (ns)	% of Total	Speedup
conv2d	1903349214	82.66	652519136	66.01	2.92
instancenorm	99453870	4.32	71529641	7.24	1.39
pad	79588125	3.46	79102365	8.00	1.01
relu	44597183	1.94	28446370	2.88	1.57
l1_loss	27966155	1.21	26933653	2.72	1.04
truediv	19459864	0.85	19177567	1.94	1.01
max_pool2d	16249430	0.71	12963561	1.31	1.25
Interpolate	16062200	0.70	12117584	1.23	1.33
mv	12737865	0.55	7773164	0.79	1.64
add	11288118	0.49	8080203	0.82	1.40
add_	8816455	0.38	5519740	0.56	1.60
leaky_relu	8578987	0.37	5308481	0.54	1.62
sum	8150963	0.35	7294031	0.74	1.12
cat	7054962	0.31	6878672	0.70	1.03
mul_	6539092	0.28	6513756	0.66	1.00
add	5630074	0.24	4482021	0.45	1.26
interpolate	5457247	0.24	5328349	0.54	1.02

TIME BREAKDOWN BETWEEN NETWORK LAYERS

Network Breakdown

BERT Large, Single V100

1.7x	1.6 x

LAYER NORM

TIME BREAKDOWN BETWEEN NETWORK LAYERS

Network Breakdown

BERT Large, Single V100

MAKE SURE TENSOR CORES ARE BEING USED

NVIDIA Deep Learning Profiler TensorBoard Plugin

Nodes using TC are ops that use Tensor Cores

Nodes Eligible For TC are ops that did not use Tensor Cores but could have (e.g. conv/linear)

Node Summar
All Nodes
Nodes Using
Nodes Eligibl But Not Using
All Other Nod
TC stands for "Tens
GPU Time is the cu

For individual layers can check whether input shapes satisfy TC constraints

GPU Time ≑ (µs)	CPU Time 🝦 (µs)	Op Name	ф	¢ Origin	¢ Calls	TC 💠 Eligible	Using 🔻 TC	Kernel 🝦 Calls	Data Type
81,324	10,396	resnet50_v1.5/btinck_block_4_2/bottleneck_1/conv2d/Conv2D	Conv2D	GraphDef	295	~	~	295	float16
82,005	8,885	resnet50_v1.5/btinck_block_4_3/bottleneck_1/conv2d/Conv2D	Conv2D	GraphDef	295	~	*	295	float16
84,736	8,090	resnet50_v1.5/btlnck_block_3_7/bottleneck_1/conv2d/Conv2D	Conv2D	GraphDef	295	*	~	295	float16

ŋy

	GPU Time (ms)	Total Count	GPU Time
	53,247.5	7,329	
тс	19,166.8	153	36%
e For TC,	4,811.2	8	55%
les	29,269.4	7,168	9%
or Cores" mulative time execu	uting GPU kernels		Using TC

DOUBLE CHECK ON TENSOR CORE EFFICIENCY

If a few layers dominate training time, then make toy example for those layers

```
n, k = (1024, 1024) \# layer dimensions
x = torch.randn(k, n).cuda().half()
linear = torch.nn.Linear(k, n).cuda().half()
y = linear(x) + x
```

NVIDIA Nsight Compute (next gen profiler for CUDA applications)

nv-nsight-cu-cli --metrics sm__pipe_tensor_cycles_active.avg.pct_of_peak_sustained_active python train.py

Kernel Name	Metric Name
volta_fp16_s884cudnn	<pre>smpipe_tensor_cycles_active.avg</pre>
elementwise_kernel	<pre>smpipe_tensor_cycles_active.avg</pre>

Metric Unit	Metric Value
%	86.35
%	0

IMPROVING TENSOR CORE PERFORMANCE

Second

Per

Operations

Tera

1. Satisfy shape constraints to enable tensor cores

- For linear layers: input size, output size, batch size should be multiples of 8
- For convolutions: input and output channel counts should be multiples of 8
- Not requirement for cuBLAS >=11.0 and cuDNN >= 8.0, but can help better perf

2. Ensure Tensor Cores are doing enough math

- If any GEMM dimension is 128 or smaller, operation is memory bound rather than math bound
- Speedup will be in 1-2x range rather than 8-16x

NVIDIA

Linear layer with M=N=8192 Benchmarked on V100 with cuBLAS 10.1

GENERAL PERFORMANCE GUIDELINES

Follow a few simple guidelines to maximize performance from mixed-precision

- 1. Ensure most of training time is spent doing GPU work
 - Ensure GPU is being utilized (e.g. larger model/batch size)
 - Eliminate CPU inefficiencies such as data preprocessing
- 2. Ensure math-bound layers (gemms and convs) dominate training time
 - Leverage fusions to reduce time spent on memory-bound layers
 - Adapt network architecture to be more hardware-friendly
- 3. Improve Tensor Core utilization with good parameter choices
 - Favor multiples of 8 for linear/conv layer dimensions
 - Ensure linear/conv layers are large enough to fully utilize TCs

NVIDIA Deep Learning Performance Guide

GTC2020 - Tensor Core Performance on **NVIDIA GPUs:** The Ultimate Guide

CONCLUSIONS

CONCLUSIONS

A100 introduces the next generation of Tensor Cores for DL acceleration

- TF32 is the default math mode on A100
- Accelerates single-precision training
- 10x more math throughput that Volta single-precision
- Network speedups up to 6x

FP16 and BF16 formats for maximum speed

- FP16 and BF16 Tensor Cores provide 16x more math throughput than FP32 (2x faster than TF32)
- AMP makes FP16 training easy in all major frameworks
- Training results match those of single-precision, require no changes to hyper-parameters
- Also reduce memory consumption, enabling larger batches, larger models, etc

Sparsity support for a further 2x math throughput

Accelerates DL inference

