Research Data Management for Bioimage Data at the HHU

Metadata Curation: What are ontologies? Why and how to use them?

Tom Boissonnet

Adapted from: Schmidt C., Bortolomeazzi M., Boissonnet T., Fortmann-Grote C. *et al.* (2023). I3D:bio's OMERO training material: Re-usable, adjustable, multi-purpose slides for local user training. Zenodo. DOI: 10.5281/zenodo.8323588 If not stated otherwise, the content of this material (except for logos and the slide design) is published under a <u>Creative</u> <u>Commons Attribution 4.0 license</u>.

hhu Heinrich Heine Universität Düsseldorf

Metadata details in form of Key-Value Pair annotation

Key-Value Pairs allow (standardized) annotation of detailed metadata

Consists of

- Key: Denotes a real-world object or an abstract concept that can be assigned a specific value (of different possible values)
- Value: Number or text string that specifies the object denoted under "Key"

Examples:

Key: "cell type"Value: "CD4+ T cell"Key: "disease model"Value: "Experimental Autoimmune Encephalomyelitis"

Standardize Key-Value pairs?

Controlled vocabularies

A controlled vocabulary provides a list of terms.

- a definition of each term
- a unique identifier of each term
- different types exist, e.g.,
 - Alphabetical list
 - Thesaurus (a collection of synonyms)
 - Taxonomy (hierarchical or network-like list of terms)
 - (ontology)

→ Allows standardized usage of terms

Controlled vocabularies – example: MeSH

Medical Subject	NIH National Library of Medicine National Center for Biotechnology Information						
Headings (MeSH)	MeSH MeSH Limits Advanced	Search					
	Full - Serve	t to: ↓ PubMed Search Builder					
	CD4-Positive T-Lymphocytes						
Controlled	A critical subpopulation of T-lymphocytes involved in the induction of most immunological functions. The HIV virus has selective tropism for the which expresses the CD4 phenotypic marker, a receptor for HIV. In fact, the key element in the profound immunosuppression seen in HIV infect the depletion of this subset of T-lymphocytes.	T4 cell ion is					
vocabulary in the	Tree Number(s): A11.118.637.555.567.569.200, A15.145.229.637.555.567.569.200, A15.382.490.555.567.569.200 MeSH Unique ID: D015496 Entry Terms:	MeSH					
form of a thesaurus	CD4 Positive T Lymphocytes CD4-Positive T-Lymphocyte T-Lymphocyte, CD4-Positive T-Lymphocytes, CD4-Positive	"Lymphocytes"[MeSH Terms] (1) MeSH house mouse (1)					
	CD4-Positive Lymphocytes	laxonomy					
	CD4-Positive Lymphocyte	Q rat (2) Taxonomy					
curated by the National	Lymphocyte, CD4-Positive Lymphocytes, CD4-Positive T4 Cells T4 Cell	See more					
Library of Medicine (US)	T4 Lymphocytes T4 Lymphocyte						
	Previous Indexing:						
	• <u>T Lymphocytes (1986-1988)</u>						

 $(\mathbf{\hat{H}})$

BY

(00)

Use of controlled vocabularies in practice

Example of controlled vocabulary usage in Key-Value Pairs:

Key: cell type **Key:** cell type term accession number **Value:** http://id.nlm.nih.gov/mesh/D015496

Value: CD4-positive T-lymphocyte

- \rightarrow The term is defined
- \rightarrow Some hierarchical information is contained in MeSH see \rightarrow
- \rightarrow Attributes / properties / relationships are missing

Ontologies

An **ontology** is a conceptual framework of how specific terms are used to represent *domain knowledge* in a (research) domain.

- Defines term attributes/properties, and relationships between the terms
- Terms with shared attributes are grouped into classes
- Terms in different ontologies are mapped to each other or adopted
- Can be extended over time with the evolving domain knowledge (i.e., an ontology is versioned)
- Formalized, i.e., ontologies can be expressed in ontology formats (machine-interpretable)

Examples of Ontologies:

- Experimental Factor Ontology (EFO) curated by the EMBL EBI
- Biological Imaging Methods Ontology (FBbi) curated by the Cell Image Library
- Cell Line Ontology (CLO) community-based, curated at the University of Michigan

Ontologies consist of classes with attributes

Class Represents a real-world object (e.g., "microscope objective lense") or an abstract concept (e.g., "disease model")

A class comprises subclasses or individual terms (instances) sharing attributes. Classes have specific relationships with each other.

AttributeSpecific property of a class (can be in form of Key-Value Pairs), e.g.:Key: DefinitionValue: "This is the term definition (and a reference
to a paper that first described it)."

Relationship Relationship between classes

<u>Note:</u> The Key-Value Pairs in OMERO are not the same as the Key-Value Pairs for ontology class attributes. Both use the same concept independently.

p 8

Use of ontologies in practice

Value: "CD4+ T cell" Key: "cell type" "CD4+ T cell" ",CD4-positive T-lymphocyte" "naive, CD4-positive T cell" "CD4-positive, alpha-beta T cell" "Th0 cell" "CD4+ T helper cell"

Example of ontology usage in Key-Value Pairs: Value: CD4-positive, alpha-beta T cell **Key:** cell type **Key:** cell type term accession number **Value:** http://purl.obolibrary.org/obo/CL 0000624

Several ontologies can use the *same term*, e.g.:

- Experimental Factor Ontology (EFO)
- Cell Ontology (CL)
- Uber Anatomy Ontology (UBERON)
- others

Why are there many

different ontologies?

Why are there so many ontologies?

p 10

Different ontologies are designed to optimally *represent their respective domain knowledge* (for example, the relationship between terms)

This knowledge can be represented as a tree structure or "knowledge graph". *Example:*

Graph visualizations of different ontologies

Term: CD4-positive, alpha-beta T cell; <u>http://purl.obolibrary.org/obo/CL_0000624</u>

Mapping between ontologies

Terms are adopted from other ontologies, or synonyms in different ontologies are mapped to each other.

→ Semantic knowledge *across* domains!

The advantage of using ontologies

A single Key-Value Pair can carry extended domain knowledge!

"CD4-positive, alpha-beta T cell" following an ontology (here: EFO) includes more information from the domain knowledge formalized in the ontology (and cross-domain knowledge formalized by mapping):

- Is carrying a T cell receptor with $\alpha\beta$ -chains
- Has completed thymic selection (i.e., is mature)
- Is a cell of the hematopoietic system
- etc...

Due to the ontology format, a computer can read the knowledge!

Using ontologies in OMERO 1/2

There is no unified standard for the use of ontologies in OMERO. But we can start working with some recommendations.

Suggestion (based on REMBI¹ items, and ISA-TAB²): To create machine-actionable metadata, make use of **ontology terms** and **ontology term source references**:

- Use the ontology-derived term as the Value for a specific Key
- Add the ontology term URL as the Value for a second Key using the <Key> + "Term Accession Number"

Example

Key: Biological entity **Key:** Biological entity Term Accession Number Value: CD4-positive, alpha-beta T cell Value: http://purl.obolibrary.org/obo/CL_0000624

Using ontologies in OMERO 2/2

When and why to include the ontology source reference?

Ontologies allow for *cross-domain* referencing. I.e., a specific term in one ontology may be adopted from another ontology.

How do you know? Example: A term was chosen from EFO ontology but the term ID implies CL ontology: http://purl.obolibrary.org/obo/CL_0000624

Solution? Include the ontology source URL:

Example

Key: Biological entity **Key:** Biological entity Term Accession Number **Key:** Biological entity Term Source REF Value: CD4-positive, alpha-beta T cell Value: http://purl.obolibrary.org/obo/CL_0000624 Value: http://www.ebi.ac.uk/efo/efo.owl

Term ID points to CL (not EFO)

Benefits of using ontologies for data annotation

Pre-publication benefits:

- Avoid term ambiguity in collaborative research settings •
- Use ontology identifiers for automated image analysis workflows
- Enable semantic search in your own dataset(s) •

Post-publication benefits:

- Your publication & data are more likely to be found by others, which • can increase citations and facilitate collaboration
- Your data is retrievable for semantic search across domains and can • thus generate a higher scientific impact

Getting started with ontologies – Open Biological and Biomedical Ontologies (OBO) Acadamy

🗳 OBO Semantic Eng	ineering Training		Q Search	● GitHub ☆ 59 ♀ 32				
OBO Semantic Engineering	Introduct	ion to or	atalagias	Table of contents				
Training	Introduct		Itologies	Why do we need ontologies?				
About the course				We can't find what we're				
Getting started with learning	Based on CL edite	ors training by D	David Osumi-Sutherland	looking for				
Overview of lessons and tutorials				We don't know what we're talking about				
Contribute to the course	Why do we	nood onto	logioo2	Controlled vocabulary (CV)				
Courses >	why do we	need onto	logies?	Key features				
Pathways >	We face an ever-i	ncreasing delug	e of biological data analysis. Ensuring that this data and	Example using wines				
Lessons In Development	analysis are Finda Findability Interor	analysis are Findable, Accessible, Interoperable, and Re-usable (FAIR) is a major challenge.						
Tutorials >	standardised met	adata can mak	e it easy to find data and analyses despite variations in	Definition				
How-to guides >	terminology ('Clar	a cell' vs 'nonci	liated bronchiolar secretory cell' vs 'club cell') and precision	Key features				
Reference > Explanations ~	('bronchial epithe	lial cell' vs 'club	cell'). Understanding which entities are referred to in metadata	Example using wines (Taxonomy of wine)				
Introduction to Ontologies	have found is of i	nterest to them	and can aid in its re-use and interoperability with other data and	Support for grouping and				
Logical axiomatization of	analyses. For exa	mple, does an a	annotation of sample data with a term for breast cancer refer to	varying levels of precision				
classes & use of reasoning	the health status	of the patient fr	om which the sample was derived or that the sample itself	From hierarchical CVs to ontologies				
lerm Comments	comes from a bre	ast cancer tum	or?	Synonyms				
Properties				Polyhierarchy				
Writing good issues	We can't find v	vhat we're loo	oking for	Named relationships				
Ontology Matching				What is an ontology?				
Which biomedical ontologies	Given variation in	terminology an	Definition					
should we use? OWL, OBO, JSON? Base,	findability. One ve systems, combine	solution to this problem is to rely on user-generated keyword systems, combined with some method of allowing users to choose from previously used						
simple, full, basic? What should you use and why?	keywords. This ca	keywords. This can produce some degree of annotation alignment but also results in fragmented						
What are taxon constraints?	annotation and va	arying levels of	precision with no clear way to relate annotations.	Non-logical parts of ontologies				
The logical building blocks of	For example, tryir	For example, trying to refer to feces, in NCBI BioSample:						
OWL SubClassOf versus		Decede		Using identifiers devoid of intrinsic meaning				
EquivalentTo	Query	Records		IRIs? URIs? URLs?				
Existential restrictions	Feces	22,592		Building scalable ontologies				

Getting started with ontologies – FAIR Cookbook

https://faircookbook.elixir-europe.org/content/recipes/interoperability/introduction-terminologies-ontologies.html

p 18

Getting started with ontologies – BioPortal BioOntology

Getting started with ontologies – Ontology Lookup Service (by EMBL-EBI)

- The Related Tools

https://www.ebi.ac.uk/ols4

p 20

https://www.ebi.ac.uk/ols4 (last access: 2023-08-16)

Getting started with ontologies – ISA tools software suite

Ҏ isatools	🖵 Software Suite 🗡	🛗 Model and Fo	ormats ${}^{}$	🖋 Blog	🛔 Support	User (Community and Publications			У	f	Q ~
		The open biomedic	source l al experi	SA framew ments that	vork and tools employing on	s help to e or a c	o manage an increasingly diverse ombination of technologies.	set of lif	fe science, environmental and			
		Built arou model an experime that the r	nd the ' l d serializ ntal met esulting	Investigatio zations (tab adata (i.e. s data and di	n' (the project ular, JSON and sample charact iscoveries are	contex d RDF), t teristics reprodu	t), ' S tudy' (a unit of research) and the ISA framework helps you to p , technology and measurement t ucible and reusable.	d ' A ssay' provide r types, sa	(analytical measurement) data ich description of the ımple-to-data relationships) so			
		/	Collect a standard Describe using co minimu requirer where p	and curate, fo ds e the experim ommunity-def m reporting ments and on possible.	Ilowing Iental steps fined Itologies,		Store and browse, locally or publicly Create your own repository to search and browse the experimental description and associated data, hosted openly or privately.	*	Submit to public repositories When required, reformat experiments for submission to supported public repositories or directly export to those already using ISA formats.			
		<	Analyse Upload o descript to a gro known a	with existing experimental tions and asso wing number analysis system	ciated data ociated data of well- ms that ISA	4	Release, reason and nanopublish Explore and reason over your experiments, open them to the linked data universe, or publish nano-statements of your	∎ ^	Publish data alongside your article Directly export your experiments to a new generation of data journals that are accepting submissions in ISA formats			

Software tools (outside of OMERO) for metadata annotation

(cc)

MDE.mic (OMERO.mde) for ontology-compliant annotation

Intermediate step during the data import to

OMERO:

Review and Annotate metadata using

OMERO.mde, a metadata editor.

It allows to edit:

- metadata of individual files,
- metadata the import queue in batch,
- and is supported by standardized, but configurable metadata fields and ontology term look-up

