
Questions? Nima.Saadat@hhu.de 1

Learning outcomes

● Learning fundamental programming skills
in Python

● Describe simple dynamic systems with
equations (Mathematical model)

● Simulate dynamic systems using Python
(numerical solutions)

● Visualize the results in different ways

● Interpret and analyze results from
simulations

Questions? Nima.Saadat@hhu.de 2

Why do we program?

● Computers are excellent at calculating/sorting things very fast
● Humans are (sometimes) good at thinking but not very fast in

calculating/sorting
● Programming: Telling your computer to do iterative & annoying

tasks
● Programming languages: Translating human instructions to a

language that the computer “understands”

Questions? Nima.Saadat@hhu.de 3

Why do we use Python?

● Open source and object oriented programming language
● Many programming languages are good for certain

purposes
● Python can be used for almost everything
● Python: accessible syntax and useful packages
● Many scientific and commercial programs choose Python

as programming language
– NASA, Google, Youtube, Reddit, Instagram, Video Games etc.

Questions? Nima.Saadat@hhu.de 4

Lets get started – Where do we
program?

● Coding in python
– Write a piece of text in any text editor that formulates the code you want

to run
● Running a code

– Pass the piece of text to a “Interpreter” that reads the text and translates
the commands and operations to the computer (typically in the Console)

● Instead of writing code in any text editor, we prefer IDEs
(Integrated Development Environment)
– include very helpful tools for coding

Questions? Nima.Saadat@hhu.de 5

Integrated Development Environments

● Many different IDEs available
● Most common ones:

– PyCharm

– Jupyter Notebook

– Spyder

● This lecture is being taught in Spyder
– If you already know how to program in Python and

prefer an other IDE, feel free to use it

● Task: Open Spyder on your devices

Questions? Nima.Saadat@hhu.de

Script

Console

Optional Tools

Questions? Nima.Saadat@hhu.de 7

IPython Console

● “Interactive Mode”
● Executes your Code (Pass

commands and instructions
to the computer)

● “Remembers” the
commands and definitions
that you defined and
delivered

● Essentially: The Console
runs Code

Questions? Nima.Saadat@hhu.de 8

Optional Tools

● A window displaying
optional tools for making
coding easier

● Bottom tabs show options
● Personal suggestion :

Choose the “Variable
Explorer”, because it is the
most useful (for our course)

Questions? Nima.Saadat@hhu.de 9

Script

● Many lines of code
that work together can
be passed to the
interpreter / IPython
Console at once

● Write your code in the
script and hit the
“Run” button

● Scripts are read from
top to bottom

Questions? Nima.Saadat@hhu.de 10

Before we begin: Some tips for Python
beginners
● Computers only do what we tell them to do

– If “it doesn’t work”, it is our fault – not the computers
● A major skill is to efficiently use Google while coding
● The chances that the problems you may encounter have

already been solved on StackOverflow are extremely high

Questions? Nima.Saadat@hhu.de 11

Lets begin – with comments

● Comments are lines of text in code
that are ignored by the interpreter

● Comments are used in code to
– Describe in words what a certain part

of the code is used for
– Deactivate parts of your code without

deleting it
● One line comments begin with an

hash #
● Comments over multiple lines start

and end with three quotation marks

‘‘‘ or “ “ “ (decide on one of both)
Don’t use non-ASCII characters in
neither your code nor the comments

Questions? Nima.Saadat@hhu.de 12

Data types in general

● Many data types in Python
– Integers and floats
– Strings
– Lists
– Dictionaries
– Etc.

● Find out what datatype you are dealing with using type()

● In Python, dots are used as decimal placements and
commas are used for separating elements

Questions? Nima.Saadat@hhu.de 13

Data types – Integers and floats

● Integers: Numbers without
decimal placements
– Numbers without points and/or

decimals or redefine numbers to
integers with int()

● Floats: Numbers with decimal
placements
– Define numbers with points or

decimals or redefine numbers to
floats with float()

● Floats for calculation, integers for
indexing

Questions? Nima.Saadat@hhu.de 14

Defining Variables

● Define variable with letters and
numbers, as well as underlines

● First character must be a letter
(beware capital and lowercase!)

● The console will remember the
name and content (unless you
redefine it or restart the console)

● Tip: Define variable names rather
too detailed than too abbreviated

– At some point we forget the difference
between X, X1, X2 [...] X42

Questions? Nima.Saadat@hhu.de 15

Datatypes – Strings

● Strings contain are chains of
any character

● Define Strings with quotation
marks ‘ or “ in the beginning and
the end if your string

● Strings can be concatenated
with plus characters (+)

Questions? Nima.Saadat@hhu.de 16

Introduction to Objects (!!!)

● Almost every data type is an
object (part of a class) that
contains useful built-in functions

● Access the built-in functions
with a dot after the object name

● Functions are used with opened
& closed brackets at the end ()
– If the function needs

arguments, they are provided
inside of the brackets

● Use dir() and the abbreviation
for the data type to see all built-
in functions

● Use documentation to
understand and use functions

Questions? Nima.Saadat@hhu.de 17

Datatypes – Lists and indexing I (!!!)

● The (for us) most important data
type is lists or arrays

● Lists are enumerations of
objects that can be any data
type

● Define with square brackets []

● The objects inside a list have
indices and can be accessed by
their index

Index counting starts at 0 in Python

I ndex :

Questions? Nima.Saadat@hhu.de 18

Datatypes – Lists and indexing II (!!!)

● Access elements of an list with
the list name and the index in
square brackets

● The index -1 returns the last
element

● Get the absolute length of a list
with len()

● Lists include many very useful
built-in functions

Questions? Nima.Saadat@hhu.de 19

Exercises I – Use the Documentation

1. Define a list containing the age of all your family members

2. Sort this list from youngest to the oldest

3. Delete the youngest person from the list

4. Add number 27 to your list

5. Change the second number in the list to 14

6. Revert the order of the list

7. Create a new list containing only the first two elements of the old list

8. Concatenate both lists into another new list

Avoid “hardcoding”! Your code should work with ANY list of ages

Questions? Nima.Saadat@hhu.de 20

Dictionaries

● Dictionaries are another type of container for elements
● In dictionaries each element (Value) has a “Key”
● Keys = Strings!
● Define dictionaries with { }
● Add elements with a string (Key), acolon and a value
● Separate entries with commas
● Access elements in dictionaries with the right “Key” in []

Questions? Nima.Saadat@hhu.de 21

Python functions

● Python itself includes many useful
functions like:

print() displays the element in the
console

len() returns the absolute length of a list

max() returns the biggest number
element from a list or the longest string
from a list

type() returns the data type of an
element

range() creates a list of integers from
zero to the provided integer

● For more, search in the documentation!

Questions? Nima.Saadat@hhu.de 22

Operators in Python

● Assignment: =
● Arithmetic: +, -, *, /, **, %
● Comparison: <, >, <=, >=
● Logical: and, in, or, not
● Increasing/Decreasing: +=, -=

Questions? Nima.Saadat@hhu.de 23

If statements

● Logic statements
● If a condition is satisfied, then a piece of code is executed
● Examples for conditions:

– If a number or length is equal / bigger than / smaller than sth.
– If an element is the same as another element
– If an element is inside of a list of elements
– Etc.

Questions? Nima.Saadat@hhu.de 24

How to formulate If statements
and Indentations

● Begin with if command

● Define a condition and finish with a colon :
– In this case, our condition is a comparison

– Comparing for equality is done with ==
● In the line after the colon, place a indentation

– All indented code below is executed if the
condition is satisfied (indent with tab key)

● After indentation, write a code that is only
executed when defined conditions are
satisfied

● The else statement is constructed similarly
and is executed if the defined condition is
not satisfied
– optional, depending on your code

Questions? Nima.Saadat@hhu.de 25

Small Exercise for if statements
and indentations

1. Define two variables and an empty list

2. Define an if statement:
– When the sum of the variables is greater or equal to 200,

then add that number to your list
– When the sum is not greater or equal to 200,

then print a message

Questions? Nima.Saadat@hhu.de 26

For loops I

● The length of the corresponding list defines how long a
For-loops lasts

● In every cycle, temporary variable i is assigned to the next
element inside the corresponding list

Questions? Nima.Saadat@hhu.de 27

For loops II

● Begin with a for command

● Define the name of the loop-variable

● Continue with an in command

● Define the list which defines the values of i

● Finish with a colon

● All lines below the colon that include code

that should be looped need to be indented

Questions? Nima.Saadat@hhu.de 28

While loops

● Looping as long as a condition
is satisfied

● In this example:
– The variable counter is 0
– loops as long as counter is

smaller than 10
– Inside the loop, the counter

needs to be increased
● Otherwise: Infinite loop

Questions? Nima.Saadat@hhu.de 29

Exercises II

1. Find all numbers dividable by three between 0 and 100

Hint 1: Use modulo %

Hint 2: Use combination of if statement and for loop

2. Change the code so the results will be stored in a list

Hint 3: Declare empty lists outside the loop

3. Select only even numbers from the new list

Questions? Nima.Saadat@hhu.de 30

Functions I – Without Arguments

● Functions are used to define a piece of code
that can be used multiple times without
redefining it

● Begin with a def statement
● Continue with the desired function name
● After the name, insert brackets that may

include arguments
● End with a colon
● The lines under the colon need to be indented

– Only indented code is performed inside the
function

● To use a previously defined function, write the
function name and brackets with or without
arguments

Questions? Nima.Saadat@hhu.de 31

Functions II – Defining with Args

● Functions become useful when used with
arguments

● Provide arguments inside the brackets
● Arguments can be used inside the function
● The return statement allows for the

assignment of function results to variables

● When using defined functions with
arguments, write function name with
brackets, and the desired argument inside
the brackets

● If the function ends with return, it is
possible to assign the result to a variable

Questions? Nima.Saadat@hhu.de 32

Exercises III

1. Define two functions

1.1 One that takes a list of numbers as argument and returns
the sum of all (my_list=[2, 3, 4] should return 9)

1.2 One that takes a list of numbers as argument and returns
the product of all

2. Define a function that checks whether an element
occurs in a list

3. Define a function that takes a list of words and returns
the length of the longest one

Questions? Nima.Saadat@hhu.de 33

Reminder: Objects

● Save or define the object in a variable
● To access the functions and properties of an object, write a

dot after the name

Questions? Nima.Saadat@hhu.de 34

Importing useful packages

● Python packages can be
imported

● Objects that include many
preprogrammed objects and
functions

– Access the properties of an
object with a dot!

● Very helpful functions that do
not need to be self defined

● Important example: NumPy

Questions? Nima.Saadat@hhu.de 35

Michaelis Menten Kinetics

Questions? Nima.Saadat@hhu.de 36

First Program – Michaelis Menten I

● Define a function that
– Calculates the reaction rate of a Michaelis Menten reaction
– Arguments: Substrate concentration (mmol), Vmax(mmol/h) and

Km(mmol)

● Calculate the reaction rate for Substrate concentrations between
0 and 50 mmol (Vmax of 0.2 mmol/s and Km of 1.5 mmol)

– Store the solutions in a list!

Questions? Nima.Saadat@hhu.de 37

Visualize with Matplotlib

● Visualize your results as graphs
(and more)

● Import matplotlib.pyplot
● Function plot() plots two lists of

same length
– First argument is the list for X axis

values
– Second argument is the list for Y

axis values
● Function show() displays the

graph

Questions? Nima.Saadat@hhu.de 38

First Program – Michaelis Menten II

● Visualize the results from the previous task
– Look into the documentation to label the x and y axis

● Increase/Decrease the Vmax and Km values and calculate
again
– Visualize and compare the results in one plot
– Look into the documentation to label different graphs in one plot

Questions? Nima.Saadat@hhu.de 39

Differential equations and
programming

● Instead of solving ODEs analytically we solve them numerically
● Step by step solving using time steps and initial conditions
● Takes a long time to do by hand – program computers to perform simulations
● Write programs that calculate ODEs over time

● Examples: Simplified bacterial growth,

Lotka Volterra

Questions? Nima.Saadat@hhu.de 40

Import the necessary packages

● The modelbase package includes all necessary function for the
implementation of ODE models

● The numpy package includes diverse functions from vector and
matrix calculations to list generation

● The matplotlib package includes useful functions for visualization of
graphs

Questions? Nima.Saadat@hhu.de 41

1. Parameter definition and model
initialisation

● Define the model parameters in a
dictionary (here p)

● Define a variable that will include the
model object (here m)

● Define the model object with an
instantiation of a modelbase Model

– The instantiation needs the
parameter dictionary as an argument

Questions? Nima.Saadat@hhu.de 42

2. Define the variables
(compounds/species)

● Define a list containing the
names of the model variables
as strings

● Execute the modelbase function
set_cpds() to set the variables
into the model object

Questions? Nima.Saadat@hhu.de 43

3. Define the rate equations for
reactions

● Define a function that takes the
parameter dictionary as first
argument and the involved
variables as following arguments

● The function should return the rate
● The parameters inside the

functions will be called from a
modelbase parameter object

– Therefore access the parameters
via the dictionary name and a dot

Questions? Nima.Saadat@hhu.de 44

● Every ODE consists of rate equations

– In simple bacterial growth, there is only one ODE including one rate equation

● Define a rate to the modelbase object by using the function set_rate and
providing the arguments of

– name of the rate as a string

– corresponding Python function

– species involved in the rate equation as strings

4. Set the rates/reactions

Questions? Nima.Saadat@hhu.de 45

5. Set the stoichiometry

● Rate equations affect one or more variables (e.g. due to conversion).

– Their effect is defined by the rate itself and the stoichiometric coefficient
of the rate/reaction

● Define the stoichiometric coefficients of a rate/reaction with the
modelbase function set_stoichiometry()

– Provide the rate/reaction name as a string, and a dictionary of species
names with the corresponding stoichiometric coefficients

Questions? Nima.Saadat@hhu.de 46

6. Instantiate a simulation object

● Use the model object that is now ready to initiate a new object
which can perform simulations

● Define a new variable name (here s) and instantiate a Simulator
object by providing the model object as an argument

Questions? Nima.Saadat@hhu.de 47

7. Define the Time and the initial
conditions

● In order to perform a ODE simulation, we need the time to integrate
over, as well as the starting points of our simulation (initial values or
initial conditions)

● Define the time in a variable (here T) as a list of time points
(suggested: np.linspace())

● In the case of only one ODE, define a initial value variable

Questions? Nima.Saadat@hhu.de 48

8. Perform a simulation!

● To perform a simulation over time, execute the timeCourse()
function of the simulator object with the time span and the initial
conditions as arguments

Questions? Nima.Saadat@hhu.de 49

9. Accessing and plotting the
results

● The results of the simulation are
a list of species quantities for
each time point in the time list

● The simulation results are
captured in the simulator object

– can be accessed by the
getY() function

● The results can now be plotted
against the time

Questions? Nima.Saadat@hhu.de 50

Example 2: Lotka Volterra

● Initiate a parameter dictionary
and a list of species names

● Instantiate the model object and
set the species names with
set_cpd()

Questions? Nima.Saadat@hhu.de 51

Rate equations and stoichiometric
coefficients

● The rate that increases prey
population is dependent on
prey and increases prey
(stoichiometry is positive)

● The rate that decreases prey
population is dependent on
prey and predators and
decreases prey
(stoichiometry is negative)

Questions? Nima.Saadat@hhu.de 52

Rate equations and stoichiometric
coefficients

● The rate that increases predator
population is dependent on prey
and predators and increases
predator # (stoichiometry is
positive)

● The rate that decreases
predator population is
dependent on predators and
decreases predator #
(stoichiometry is negative)

Questions? Nima.Saadat@hhu.de 53

List of initial values

● More than one ODE:
– Provide initial_values as a

list
– Same order as in species

definition!

Questions? Nima.Saadat@hhu.de 54

Visualization of results

● The result s.getY() is now a list of lists
containing the corresponding species
quantities for every time point

● The list of results for one species can
be accessed with [:,i] after the result-
list name and with the corresponding
index (i)

● plt.xlabel() and plt.ylabel() are
functions that take a string and that
label the axes of a plot

Questions? Nima.Saadat@hhu.de 55

Carbon Label Models

● Implementation of carbon label models

X5P Ery4P

G3P F6P

TK

Questions? Nima.Saadat@hhu.de 56

Carbon Label Models

● Construction of isotope-
label specific models

● Assign LabelModel() class
● Setting parameters

Questions? Nima.Saadat@hhu.de 57

Carbon Label Models

● Adding compounds and
respective numbers of
carbon atoms

● Definition of forward and
backward reaction

Name Number of carbon atoms

Questions? Nima.Saadat@hhu.de 58

Carbon Label Models

● Add carbonmap reaction of forward reaction

Reaction name

Forward reaction

Carbon map

Label origin

Label destination

Input of reaction

Questions? Nima.Saadat@hhu.de 59

Carbon Label Models

● Add carbonmap reaction of backward reaction

Reaction name

Backward reaction

Carbon map

Label origin

Label destination

Input of reaction

Questions? Nima.Saadat@hhu.de 60

Carbon Label Models

● Add initial concentrations and label positions
● Simulation over time

Questions? Nima.Saadat@hhu.de 61

Fast equilibrium calculations
(Algebraic Modules)
● Define the “slow

variable” and
parameters

● Define equilibrium
function for algebraic
module

Parameters Slow variable

Questions? Nima.Saadat@hhu.de 62

Fast equilibrium calculations
(Algebraic Modules)
● Adding the

algebraic module
to the model

Algebraic module
function

Name of module

Slow
variable

Other
variables

Questions? Nima.Saadat@hhu.de 63

Fast equilibrium calculations
(Algebraic Modules)
● Introducing influx

and outflux
reactions for slow
variable

● Simulation over
time

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

